IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp10-21.html
   My bibliography  Save this article

Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode

Author

Listed:
  • Sun, Yi-Fei
  • Zhong, Jin-Rong
  • Li, Rui
  • Zhu, Tao
  • Cao, Xin-Yi
  • Chen, Guang-Jin
  • Wang, Xiao-Hui
  • Yang, Lan-Ying
  • Sun, Chang-Yu

Abstract

CO2 replacement is considered as a promising method for the simultaneous development of natural gas hydrate and CO2 sequestration. The addition of small molecular gases, such as N2 and H2, into the injected gas can increase the gas recovery ratio and prevent CO2 liquefaction. Based on previous studies, this work presents methane hydrate exploitation using the CO2/H2 continuous injection-production mode. The mechanism combines gas sweep with CH4/CO2 replacement. A series of experiments were carried out to optimize the injected gas composition and flow rate, which have a significant effect on the rate of CH4 hydrate decomposition, amount of CO2 sequestration, and cost. The compositions of the injected gases had little effect on the recovery rate when a relatively higher flow rate was employed. A balance between CH4 production and CO2 sequestration was established when the CO2 mole fraction was slightly <74%, and the temperature of the reservoir did not decline throughout the whole process. The injection rate affected both the displacement efficiency and the production cost. Moreover, through these experiments, we discovered a more economically feasible and productive measure for regulating the injection rate.

Suggested Citation

  • Sun, Yi-Fei & Zhong, Jin-Rong & Li, Rui & Zhu, Tao & Cao, Xin-Yi & Chen, Guang-Jin & Wang, Xiao-Hui & Yang, Lan-Ying & Sun, Chang-Yu, 2018. "Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode," Applied Energy, Elsevier, vol. 226(C), pages 10-21.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:10-21
    DOI: 10.1016/j.apenergy.2018.05.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Zhang, Yu, 2015. "Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir," Applied Energy, Elsevier, vol. 154(C), pages 995-1003.
    2. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    3. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    4. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    5. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    6. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    7. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    8. Lee, Yohan & Kim, Yunju & Lee, Jaehyoung & Lee, Huen & Seo, Yongwon, 2015. "CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 150(C), pages 120-127.
    9. Lu, Shyi-Min, 2015. "A global survey of gas hydrate development and reserves: Specifically in the marine field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 884-900.
    10. Seo, Young-ju & Park, Seongmin & Kang, Hyery & Ahn, Yun-Ho & Lim, Dongwook & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Ahn, Taewoong & Seo, Yongwon & Lee, Huen, 2016. "Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage," Applied Energy, Elsevier, vol. 178(C), pages 579-586.
    11. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    2. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    3. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    4. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    5. Sun, Xian & Xiao, Peng & Wang, Xiao-Hui & Sun, Yi-Fei & Li, Xing-Xun & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Study on the influence of well closure and production pressure during dual-gas co-production from hydrate-bearing sediment containing underlying gas," Energy, Elsevier, vol. 279(C).
    6. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    7. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    8. Gambelli, Alberto Maria & Rossi, Federico, 2019. "Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement," Energy, Elsevier, vol. 172(C), pages 423-434.
    9. Sun, Yi-Fei & Zhong, Jin-Rong & Chen, Guang-Jin & Cao, Bo-Jian & Li, Rui & Chen, Dao-Yi, 2021. "A new approach to efficient and safe gas production from unsealed marine hydrate deposits," Applied Energy, Elsevier, vol. 282(PB).
    10. Sun, Yi-Fei & Wang, Yun-Fei & Zhong, Jin-Rong & Li, Wen-Zhi & Li, Rui & Cao, Bo-Jian & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode," Applied Energy, Elsevier, vol. 240(C), pages 215-225.
    11. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    12. Sun, Zhen-Feng & Li, Nan & Jia, Shuai & Cui, Jin-Long & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap," Applied Energy, Elsevier, vol. 240(C), pages 842-850.
    13. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    14. Kou, Xuan & Wang, Yi & Li, Xiao-Sen & Zhang, Yu & Chen, Zhao-Yang, 2019. "Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).
    16. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    17. Choi, Wonjung & Mok, Junghoon & Lee, Jonghyuk & Lee, Yohan & Lee, Jaehyoung & Sum, Amadeu K. & Seo, Yongwon, 2022. "Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment," Applied Energy, Elsevier, vol. 326(C).
    18. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    19. Xie, Yan & Zheng, Tao & Zhu, Yujie & Sun, Changyu & Chen, Guangjin & Feng, Jingchun, 2024. "H2 promotes the premature replacement of CH4–CO2 hydrate even when the CH4 gas-phase pressure exceeds the phase equilibrium pressure of CH4 hydrate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    20. Ouyang, Q. & Pandey, J.S. & Xu, Y. & von Solms, N., 2024. "Fundamental insights into multistep depressurization of CH4/CO2 hydrates in the presence of N2 or air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    21. Zhong, Jin-Rong & Sun, Yi-Fei & Li, Wen-Zhi & Xie, Yan & Chen, Guang-Jin & Sun, Chang-Yu & Yang, Lan-Ying & Qin, Hui-Bo & Pang, Wei-Xin & Li, Qing-Ping, 2019. "Structural transition range of methane-ethane gas hydrates during decomposition below ice point," Applied Energy, Elsevier, vol. 250(C), pages 873-881.
    22. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 gas hydrate for carbon capture and storage applications – Part 2," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    2. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    4. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    5. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    6. Sun, Yi-Fei & Wang, Yun-Fei & Zhong, Jin-Rong & Li, Wen-Zhi & Li, Rui & Cao, Bo-Jian & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode," Applied Energy, Elsevier, vol. 240(C), pages 215-225.
    7. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    8. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    9. Ma, Shihui & Zheng, Jia-nan & Tang, Dawei & Lv, Xin & Li, Qingping & Yang, Mingjun, 2019. "Experimental investigation on the decomposition characteristics of natural gas hydrates in South China Sea sediments by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 254(C).
    10. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2016. "Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization," Applied Energy, Elsevier, vol. 181(C), pages 299-309.
    11. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    12. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    13. Thakre, Niraj & Jana, Amiya K., 2017. "Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation," Applied Energy, Elsevier, vol. 205(C), pages 749-760.
    14. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    15. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    16. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    17. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    18. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    19. Lee, Yohan & Choi, Wonjung & Seo, Young-ju & Lee, Joo Yong & Lee, Jaehyoung & Seo, Yongwon, 2018. "Structural transition induced by cage-dependent guest exchange in CH4 + C3H8 hydrates with CO2 injection for energy recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 228(C), pages 229-239.
    20. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:10-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.