IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp9-18.html
   My bibliography  Save this article

Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods

Author

Listed:
  • Yan, Cheng
  • Zhu, Liandong
  • Wang, Yanxin

Abstract

Anaerobic digestion not only produces raw biogas which needs to be upgraded, but also nutrient-rich waste stream biogas slurry which needs decontamination. Therefore, this research focused on the effects of various light wavelengths, light intensities, and photoperiods on biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor. The microalgae photobioreactor was a transparent polyethylene bag (80cm×60cm×11cm). The results demonstrated that biogas upgrading and simultaneously biogas slurry decontamination was successfully achieved by the use of the photosynthetic CO2 uptake by microalgae photobioreactor. The optimal light wavelength was the mixed LED red:blue=5:5; whereas the optimized lighting control strategy was: low light intensity (300μmolm−2s−1) with long photoperiod (16h light:8h dark) for the time course of 0–48h, moderate light intensity (600μmolm−2s−1) with middle photoperiod (14h light:10h dark) for the time course of 48–96h, and high light intensity (900μmolm−2s−1) with short photoperiod (12h light:12h dark) for the time course of 96–144h. Its biogas CO2 removal efficiency was 85.46±6.25%. Its removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus were 85.23±8.32%, 87.10±7.55%, and 92.40±3.05%, respectively.

Suggested Citation

  • Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:9-18
    DOI: 10.1016/j.apenergy.2016.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916307875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    2. Luo, Gang & Wang, Wen & Angelidaki, Irini, 2014. "A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent," Applied Energy, Elsevier, vol. 132(C), pages 536-542.
    3. Jeong, Hakgeun & Lee, Junghoon & Cha, Misun, 2013. "Energy efficient growth control of microalgae using photobiological methods," Renewable Energy, Elsevier, vol. 54(C), pages 161-165.
    4. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    5. Yan, Cheng & Zheng, Zheng, 2014. "Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp," Applied Energy, Elsevier, vol. 113(C), pages 1008-1014.
    6. Bacsik, Zoltán & Cheung, Ocean & Vasiliev, Petr & Hedin, Niklas, 2016. "Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56," Applied Energy, Elsevier, vol. 162(C), pages 613-621.
    7. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    8. Xia, Zhi-Ming & Li, Xiao-Sen & Chen, Zhao-Yang & Li, Gang & Yan, Ke-Feng & Xu, Chun-Gang & Lv, Qiu-Nan & Cai, Jing, 2016. "Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent," Applied Energy, Elsevier, vol. 162(C), pages 1153-1159.
    9. Patrizio, P. & Leduc, S. & Chinese, D. & Dotzauer, E. & Kraxner, F., 2015. "Biomethane as transport fuel – A comparison with other biogas utilization pathways in northern Italy," Applied Energy, Elsevier, vol. 157(C), pages 25-34.
    10. Razzak, Shaikh A. & Hossain, Mohammad M. & Lucky, Rahima A. & Bassi, Amarjeet S. & de Lasa, Hugo, 2013. "Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 622-653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    2. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    3. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    4. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Wang, Rui-Long & Li, Ming-Jia & Li, Dong & Yang, Yi-Wen, 2022. "The synergy of light/fluid flow and membrane modification of a novel membrane microalgal photobioreactor for direct air carbon capture," Applied Energy, Elsevier, vol. 328(C).
    6. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    8. Pengfei Guo & Yuejin Zhang & Yongjun Zhao, 2018. "Biocapture of CO 2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods," IJERPH, MDPI, vol. 15(3), pages 1-18, March.
    9. Meier, L. & Barros, P. & Torres, A. & Vilchez, C. & Jeison, D., 2017. "Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod," Renewable Energy, Elsevier, vol. 106(C), pages 17-23.
    10. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.
    11. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    12. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    13. Pandey, Gaurav & Poothia, Tejaswa & Kumar, Asheesh, 2022. "Hydrate based carbon capture and sequestration (HBCCS): An innovative approach towards decarbonization," Applied Energy, Elsevier, vol. 326(C).
    14. Meier, Leslie & Martínez, Carlos & Vílchez, Carlos & Bernard, Olivier & Jeison, David, 2019. "Evaluation of the feasibility of photosynthetic biogas upgrading: Simulation of a large-scale system," Energy, Elsevier, vol. 189(C).
    15. Kevin McDonnell & Levente Molnár & Mary Harty & Fionnuala Murphy, 2020. "Feasibility Study of Carbon Dioxide Plume Geothermal Systems in Germany−Utilising Carbon Dioxide for Energy," Energies, MDPI, vol. 13(10), pages 1-24, May.
    16. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    17. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Guo & Yuejin Zhang & Yongjun Zhao, 2018. "Biocapture of CO 2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods," IJERPH, MDPI, vol. 15(3), pages 1-18, March.
    2. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    3. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    4. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    6. Geada, Pedro & Rodrigues, Rui & Loureiro, Luís & Pereira, Ricardo & Fernandes, Bruno & Teixeira, José A. & Vasconcelos, Vítor & Vicente, António A., 2018. "Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 656-668.
    7. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    8. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    9. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    10. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    11. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    12. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    13. Zhu, L.D. & Hiltunen, E. & Antila, E. & Zhong, J.J. & Yuan, Z.H. & Wang, Z.M., 2014. "Microalgal biofuels: Flexible bioenergies for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1035-1046.
    14. Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
    15. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    16. In-Ho Chang & Dawoon Jung & Tae Seok Ahn, 2014. "Improving the Effectiveness of a Nutrient Removal System Composed of Microalgae and Daphnia by an Artificial Illumination," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    17. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    18. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    19. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.
    20. Kurt, Ç. & Ekinci, K. & Uysal, Ö., 2022. "The effect of LEDs on the growth and fatty acid composition of Botryococcus braunii," Renewable Energy, Elsevier, vol. 186(C), pages 66-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.