IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v139y2015icp17-29.html
   My bibliography  Save this article

Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases

Author

Listed:
  • Lim, Cheolsoo
  • Kim, Daigon
  • Song, Changkeun
  • Kim, Jeongsoo
  • Han, Jinseok
  • Cha, Jun-Seok

Abstract

This study aimed to investigate the characteristics of exhaust emissions and the fuel economy of a compressed natural gas (CNG) vehicle fueled with biogas and natural gases. A large CNG vehicle currently used as a city bus in Korea was tested on a chassis dynamometer under the European Transient Cycle (ETC) and the National Institute of Environmental Research (NIER) 06 cycles. One CH4-enriched biogas (97.6% CH4) and 5 natural gases with different CH4 contents (81.6–94.0% CH4) were used as test fuels. Total hydrocarbons (THC), CO, NOx and CO2 emissions in the NIER 06 cycle were higher than those in the ETC cycle for all tested fuels, while the fuel economy in the NIER 06 cycle was 43.7–51.5% lower than that in the ETC cycle. Total VOC emissions increased with increasing CH4 content in the fuel, with toluene being the highest proportion of the BTEX emissions in both the ETC cycle (72–80%) and the NIER 06 cycle (73–78%). Emissions of elemental/organic carbon exhibited a similar trend to that of nanoparticle emissions. Total organic carbon was mainly comprised of organic compounds at 97–99% (ETC cycle) and 95–99% (NIER 06 cycle). Polycyclic aromatic hydrocarbon emissions in the NIER 06 cycle were 133.3–577.8% higher than in the ETC cycle because of incomplete combustion and an increase in unburned fuel in the NIER 06 cycle, which is a low-speed driving mode. Nanoparticle number concentrations were lowest for M91 among the 6 tested fuels; the total number of particles in the NIER 06 cycle was 33.2–123.8% higher than in the ETC cycle.

Suggested Citation

  • Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
  • Handle: RePEc:eee:appene:v:139:y:2015:i:c:p:17-29
    DOI: 10.1016/j.apenergy.2014.10.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914011349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.10.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poeschl, Martina & Ward, Shane & Owende, Philip, 2010. "Prospects for expanded utilization of biogas in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1782-1797, September.
    2. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2011. "Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas," Applied Energy, Elsevier, vol. 88(11), pages 3969-3977.
    3. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    4. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    5. Amiri, Shahnaz & Henning, Dag & Karlsson, Björn G., 2013. "Simulation and introduction of a CHP plant in a Swedish biogas system," Renewable Energy, Elsevier, vol. 49(C), pages 242-249.
    6. Mohseni, Farzad & Magnusson, Mimmi & Görling, Martin & Alvfors, Per, 2012. "Biogas from renewable electricity – Increasing a climate neutral fuel supply," Applied Energy, Elsevier, vol. 90(1), pages 11-16.
    7. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    8. Bielaczyc, Piotr & Woodburn, Joseph & Szczotka, Andrzej, 2014. "An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations," Applied Energy, Elsevier, vol. 117(C), pages 134-141.
    9. Kim, Y.M. & Kim, C.G. & Favrat, D., 2012. "Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources," Energy, Elsevier, vol. 43(1), pages 402-415.
    10. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    11. Subramanian, K.A. & Mathad, Vinaya C. & Vijay, V.K. & Subbarao, P.M.V., 2013. "Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer," Applied Energy, Elsevier, vol. 105(C), pages 17-29.
    12. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    13. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    14. Uusitalo, V. & Havukainen, J. & Manninen, K. & Höhn, J. & Lehtonen, E. & Rasi, S. & Soukka, R. & Horttanainen, M., 2014. "Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use," Renewable Energy, Elsevier, vol. 66(C), pages 90-98.
    15. Yamasaki, Yudai & Kanno, Masanobu & Suzuki, Yoshitaka & Kaneko, Shigehiko, 2013. "Development of an engine control system using city gas and biogas fuel mixture," Applied Energy, Elsevier, vol. 101(C), pages 465-474.
    16. Murphy, J.D. & McCarthy, K., 2005. "The optimal production of biogas for use as a transport fuel in Ireland," Renewable Energy, Elsevier, vol. 30(14), pages 2111-2127.
    17. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agarwal, Avinash Kumar & Mustafi, Nirendra Nath, 2021. "Real-world automotive emissions: Monitoring methodologies, and control measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    3. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    4. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    5. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Reddy, K.S. & Aravindhan, S. & Mallick, Tapas K., 2016. "Investigation of performance and emission characteristics of a biogas fuelled electric generator integrated with solar concentrated photovoltaic system," Renewable Energy, Elsevier, vol. 92(C), pages 233-243.
    7. Zhilong Wei & Lei Wang & Hu Liu & Zihao Liu & Haisheng Zhen, 2021. "Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity," Energies, MDPI, vol. 14(21), pages 1-16, November.
    8. Kim, Yungjin & Kawahara, Nobuyuki & Tsuboi, Kazuya & Tomita, Eiji, 2016. "Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 539-547.
    9. Kacem, Sahar Hadj & Jemni, Mohamed Ali & Driss, Zied & Abid, Mohamed Salah, 2016. "The effect of H2 enrichment on in-cylinder flow behavior, engine performances and exhaust emissions: Case of LPG-hydrogen engine," Applied Energy, Elsevier, vol. 179(C), pages 961-971.
    10. Channappagoudra, Manjunath, 2020. "Comparative study of baseline and modified engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 151(C), pages 604-618.
    11. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2020. "Effect of injection timing on modified direct injection diesel engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 147(P1), pages 1019-1032.
    12. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).
    13. Wojcieszak, Dawid & Przybył, Jacek & Myczko, Renata & Myczko, Andrzej, 2018. "Technological and energetic evaluation of maize stover silage for methane production on technical scale," Energy, Elsevier, vol. 151(C), pages 903-912.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    2. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    3. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    4. Chatterjee, Arunava & Roy, Krishna & Chatterjee, Debashis, 2014. "A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator," Energy, Elsevier, vol. 74(C), pages 707-718.
    5. Uusitalo, V. & Havukainen, J. & Soukka, R. & Väisänen, S. & Havukainen, M. & Luoranen, M., 2015. "Systematic approach for recognizing limiting factors for growth of biomethane use in transportation sector – A case study in Finland," Renewable Energy, Elsevier, vol. 80(C), pages 479-488.
    6. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    7. Cong, Rong-Gang & Caro, Dario & Thomsen, Marianne, 2017. "Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis," MPRA Paper 112291, University Library of Munich, Germany.
    8. Anderson, Larry G., 2015. "Effects of using renewable fuels on vehicle emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 162-172.
    9. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    10. Uusitalo, V. & Havukainen, J. & Manninen, K. & Höhn, J. & Lehtonen, E. & Rasi, S. & Soukka, R. & Horttanainen, M., 2014. "Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use," Renewable Energy, Elsevier, vol. 66(C), pages 90-98.
    11. Fierro, Julio & Gómez, Xiomar & Murphy, Jerry D., 2014. "What is the resource of second generation gaseous transport biofuels based on pig slurries in Spain?," Applied Energy, Elsevier, vol. 114(C), pages 783-789.
    12. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    13. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).
    14. We, Ju Hyung & Kim, Sun Jin & Cho, Byung Jin, 2014. "Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator," Energy, Elsevier, vol. 73(C), pages 506-512.
    15. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    16. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    17. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    18. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    20. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:139:y:2015:i:c:p:17-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.