IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v49y2013icp242-249.html
   My bibliography  Save this article

Simulation and introduction of a CHP plant in a Swedish biogas system

Author

Listed:
  • Amiri, Shahnaz
  • Henning, Dag
  • Karlsson, Björn G.

Abstract

The objectives of this study are to present a model for biogas production systems to help achieve a more cost-effective system, and to analyse the conditions for connecting combined heat and power (CHP) plants to the biogas system. The European electricity market is assumed to be fully deregulated. The relation between connection of CHP, increased electricity and heat production, electricity prices, and electricity certificate trading is investigated. A cost-minimising linear programming model (MODEST) is used. MODEST has been applied to many energy systems, but this is the first time the model has been used for biogas production. The new model, which is the main result of this work, can be used for operational optimisation and evaluating economic consequences of future changes in the biogas system. The results from the case study and sensitivity analysis show that the model is reliable and can be used for strategic planning. The results show that implementation of a biogas-based CHP plant result in an electricity power production of approximately 39GWh annually. Reduced system costs provide a profitability of 46MSEK/year if electricity and heat prices increase by 100% and electricity certificate prices increase by 50%. CO2 emission reductions up to 32,000ton/year can be achieved if generated electricity displaces coal-fired condensing power.

Suggested Citation

  • Amiri, Shahnaz & Henning, Dag & Karlsson, Björn G., 2013. "Simulation and introduction of a CHP plant in a Swedish biogas system," Renewable Energy, Elsevier, vol. 49(C), pages 242-249.
  • Handle: RePEc:eee:renene:v:49:y:2013:i:c:p:242-249
    DOI: 10.1016/j.renene.2012.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henning, Dag, 1997. "MODEST—An energy-system optimisation model applicable to local utilities and countries," Energy, Elsevier, vol. 22(12), pages 1135-1150.
    2. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
    3. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
    4. Karlsson, Magnus & Gebremedhin, Alemayehu & Klugman, Sofia & Henning, Dag & Moshfegh, Bahram, 2009. "Regional energy system optimization - Potential for a regional heat market," Applied Energy, Elsevier, vol. 86(4), pages 441-451, April.
    5. Henning, Dag & Trygg, Louise, 2008. "Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions," Energy Policy, Elsevier, vol. 36(7), pages 2330-2350, July.
    6. Trygg, Louise & Amiri, Shahnaz, 2007. "European perspective on absorption cooling in a combined heat and power system - A case study of energy utility and industries in Sweden," Applied Energy, Elsevier, vol. 84(12), pages 1319-1337, December.
    7. Amiri, S. & Moshfegh, B., 2010. "Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems," Applied Energy, Elsevier, vol. 87(7), pages 2401-2410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    2. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Fiala, Marco & Feijoo, Gumersindo & Lema, Juan M. & Moreira, María Teresa, 2014. "Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops," Renewable Energy, Elsevier, vol. 68(C), pages 625-635.
    3. Wang, Aili & Wang, Shunsheng & Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood & Moghadam, Ali Jabari, 2022. "Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle," Energy, Elsevier, vol. 241(C).
    4. Fernández-Polanco, D. & Tatsumi, H., 2016. "Optimum energy integration of thermal hydrolysis through pinch analysis," Renewable Energy, Elsevier, vol. 96(PB), pages 1093-1102.
    5. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    6. Alberto Benato & Alarico Macor, 2021. "Costs to Reduce the Human Health Toxicity of Biogas Engine Emissions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    7. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    8. Weinberger, Gottfried & Moshfegh, Bahram, 2018. "Investigating influential techno-economic factors for combined heat and power production using optimization and metamodeling," Applied Energy, Elsevier, vol. 232(C), pages 555-571.
    9. Hengeveld, E.J. & Bekkering, J. & Van Dael, M. & van Gemert, W.J.T. & Broekhuis, A.A., 2020. "Potential advantages in heat and power production when biogas is collected from several digesters using dedicated pipelines - A case study in the “Province of West-Flanders” (Belgium)," Renewable Energy, Elsevier, vol. 149(C), pages 549-564.
    10. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    11. De Menna, Fabio & Malagnino, Remo Alessio & Vittuari, Matteo & Segrè, Andrea & Molari, Giovanni & Deligios, Paola A. & Solinas, Stefania & Ledda, Luigi, 2018. "Optimization of agricultural biogas supply chains using artichoke byproducts in existing plants," Agricultural Systems, Elsevier, vol. 165(C), pages 137-146.
    12. Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    13. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    14. Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
    15. Kang, Jun Young & Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom, 2014. "Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel," Energy, Elsevier, vol. 67(C), pages 309-318.
    16. Vlatko Milić & Shahnaz Amiri & Bahram Moshfegh, 2020. "A Systematic Approach to Predict the Economic and Environmental Effects of the Cost-Optimal Energy Renovation of a Historic Building District on the District Heating System," Energies, MDPI, vol. 13(1), pages 1-25, January.
    17. Stefan Blomqvist & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund, 2019. "Analyzing the Performance and Control of a Hydronic Pavement System in a District Heating Network," Energies, MDPI, vol. 12(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Shahnaz & Weinberger, Gottfried, 2018. "Increased cogeneration of renewable electricity through energy cooperation in a Swedish district heating system - A case study," Renewable Energy, Elsevier, vol. 116(PA), pages 866-877.
    2. Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
    3. Björnebo, Lars & Spatari, Sabrina & Gurian, Patrick L., 2018. "A greenhouse gas abatement framework for investment in district heating," Applied Energy, Elsevier, vol. 211(C), pages 1095-1105.
    4. Gebremedhin, Alemayehu, 2014. "Optimal utilisation of heat demand in district heating system—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 230-236.
    5. Weinberger, Gottfried & Moshfegh, Bahram, 2018. "Investigating influential techno-economic factors for combined heat and power production using optimization and metamodeling," Applied Energy, Elsevier, vol. 232(C), pages 555-571.
    6. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    7. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    8. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    9. Amiri, S. & Moshfegh, B., 2010. "Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems," Applied Energy, Elsevier, vol. 87(7), pages 2401-2410, July.
    10. Åberg, M. & Henning, D., 2011. "Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings," Energy Policy, Elsevier, vol. 39(12), pages 7839-7852.
    11. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
    12. Henning, Dag & Trygg, Louise, 2008. "Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions," Energy Policy, Elsevier, vol. 36(7), pages 2330-2350, July.
    13. Djuric Ilic, Danica & Dotzauer, Erik & Trygg, Louise, 2012. "District heating and ethanol production through polygeneration in Stockholm," Applied Energy, Elsevier, vol. 91(1), pages 214-221.
    14. Stefan Blomqvist & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund, 2019. "Analyzing the Performance and Control of a Hydronic Pavement System in a District Heating Network," Energies, MDPI, vol. 12(11), pages 1-23, May.
    15. Mezősi, András & Beöthy, Ákos & Kácsor, Enikő & Törőcsik, Ágnes, 2016. "A magyarországi távhő-szabályozás modellezése. A megújuló energiára alapozott hőtermelés [Modelling policy options in the district heating sector, with a focus on renewable consumption]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1149-1176.
    16. Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    17. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    18. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
    19. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
    20. Åberg, M. & Widén, J. & Henning, D., 2012. "Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example," Energy, Elsevier, vol. 41(1), pages 525-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:49:y:2013:i:c:p:242-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.