IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp625-635.html
   My bibliography  Save this article

Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops

Author

Listed:
  • Lijó, Lucía
  • González-García, Sara
  • Bacenetti, Jacopo
  • Fiala, Marco
  • Feijoo, Gumersindo
  • Lema, Juan M.
  • Moreira, María Teresa

Abstract

This study aims to evaluate the environmental consequences and energy requirements of a biogas production system and its further conversion into bioenergy by means of the Life Cycle Assessment (LCA) methodology. To do so, an Italian biogas plant operating with pig slurry and two energy crops (maize and triticale silages) as feedstock was assessed in detail in order to identify the environmental hotspots. The environmental profile was estimated through six impact categories: abiotic depletion potential (ADP), acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone layer depletion potential (ODP) and photochemical oxidation potential (POFP). An energy analysis related to the cumulative non-renewable fossil and nuclear energy demand (CED) was also performed, considering this indicator as an additional impact category.

Suggested Citation

  • Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Fiala, Marco & Feijoo, Gumersindo & Lema, Juan M. & Moreira, María Teresa, 2014. "Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops," Renewable Energy, Elsevier, vol. 68(C), pages 625-635.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:625-635
    DOI: 10.1016/j.renene.2014.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    2. Amiri, Shahnaz & Henning, Dag & Karlsson, Björn G., 2013. "Simulation and introduction of a CHP plant in a Swedish biogas system," Renewable Energy, Elsevier, vol. 49(C), pages 242-249.
    3. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    4. Ferreira, Miguel & Marques, Isabel Paula & Malico, Isabel, 2012. "Biogas in Portugal: Status and public policies in a European context," Energy Policy, Elsevier, vol. 43(C), pages 267-274.
    5. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    6. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    2. Roland Ihász & Tamás Laza, 2017. "Determining the biogas potential of agricultural by‐products in a Hungarian subregion," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(2), March.
    3. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    4. Vance, C. & Sweeney, J. & Murphy, F., 2022. "Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    6. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    7. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    8. Zhang, Yizhen & Jiang, Yan & Wang, Shun & Wang, Zhongzhong & Liu, Yanchen & Hu, Zhenhu & Zhan, Xinmin, 2021. "Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Alessandro Agostini & Ferdinando Battini & Jacopo Giuntoli & Vincenzo Tabaglio & Monica Padella & David Baxter & Luisa Marelli & Stefano Amaducci, 2015. "Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops," Energies, MDPI, vol. 8(6), pages 1-32, June.
    10. Shakira R. Hobbs & Tyler M. Harris & William J. Barr & Amy E. Landis, 2021. "Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    11. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
    12. Mahmoud Sharara & Daesoo Kim & Sammy Sadaka & Greg Thoma, 2019. "Consequential Life Cycle Assessment of Swine Manure Management within a Thermal Gasification Scenario," Energies, MDPI, vol. 12(21), pages 1-15, October.
    13. Aghbashlo, Mortaza & Tabatabaei, Meisam & Soltanian, Salman & Ghanavati, Hossein, 2019. "Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis," Renewable Energy, Elsevier, vol. 143(C), pages 64-76.
    14. Abdelsalam, E. & Hijazi, O. & Samer, M. & Yacoub, I.H. & Ali, A.S. & Ahmed, R.H. & Bernhardt, H., 2019. "Life cycle assessment of the use of laser radiation in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 142(C), pages 130-136.
    15. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    16. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    17. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Michele Moretti & Enrico Bocci, 2018. "Life Cycle Performance of Hydrogen Production via Agro-Industrial Residue Gasification—A Small Scale Power Plant Study," Energies, MDPI, vol. 11(3), pages 1-19, March.
    18. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    19. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
    21. Andreas Kiesel & Moritz Wagner & Iris Lewandowski, 2016. "Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    22. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    23. Mario Rafael Giraldi-Díaz & Eduardo Castillo-González & Lorena De Medina-Salas & Raúl Velásquez-De la Cruz & Héctor Daniel Huerta-Silva, 2021. "Environmental Impacts Associated with Intensive Production in Pig Farms in Mexico through Life Cycle Assessment," Sustainability, MDPI, vol. 13(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    2. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    3. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    4. Constantin Aurelian Ionescu & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin & Liliana Paschia & Nicoleta Luminita Gudanescu Nicolau & Gabriel Cucui & Dan Marius Coman & Sorina Geanina Stanescu, 2019. "The Analysis of the Economic Effects on the Greening and Recovery of the Sludge Waste Resulting from the Biogas Production Activity," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    5. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    6. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    7. Jan Moestedt & Sören Nilsson Påledal & Anna Schnürer & Erik Nordell, 2013. "Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation," Energies, MDPI, vol. 6(11), pages 1-14, October.
    8. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    9. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    10. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    11. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    12. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    13. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    14. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    15. Magdalena Zubrzycka, & Janusz Wojdalski, & Karol Tucki, & Mariusz Zubrzycki, 2017. "Uwarunkowania rozwoju sektora biogazu rolniczego w Polsce," Journal of Agribusiness and Rural Development, University of Life Sciences, Poznan, Poland, vol. 43(1), March.
    16. Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
    17. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    18. Nackley, Lloyd L. & Vogt, Kristiina A. & Kim, Soo-Hyung, 2014. "Arundo donax water use and photosynthetic responses to drought and elevated CO2," Agricultural Water Management, Elsevier, vol. 136(C), pages 13-22.
    19. Karin S. Levin & Felizitas Winkhart & Kurt-Jürgen Hülsbergen & Hans Jürgen Reents & Karl Auerswald, 2023. "Artefacts in Field Trial Research—Lateral Ammonia Fluxes Confound Fertiliser Plot Experiments," Agriculture, MDPI, vol. 13(8), pages 1-21, August.
    20. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:625-635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.