IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp570-581.html
   My bibliography  Save this article

Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in Mediterranean greenhouses

Author

Listed:
  • Llorach-Massana, Pere
  • Peña, Javier
  • Rieradevall, Joan
  • Montero, J. Ignacio

Abstract

Root zone heating systems offer increasing crops quality and productivity. However, these systems are based on the use of nonrenewable fuels. This paper reports on a study of different design solutions for a root zone heating system, based on thermal energy storage with PCM. The objective of the study was to define, through multiple experiments, the most efficient PCM melting/freezing temperature and location with respect to the substrate (i.e., under the substrate) for the application under study; as well as, to determine the system’s environmental and economic feasibility, with life cycle assessment and life cycle cost methodologies. Results show that the best melting temperature for the application under study is 15 °C. To increase the efficiency of the system, PCMs may be macro encapsulated and wrap the entire perlite bag. Moreover, it seems that PCMs are far to substitute conventional root zone heating systems because it does not provided enough heat during nights. Nevertheless, PCMs can help to reduce the operation time of conventional systems. Based on one night results it seem that PCM could provide annual saving of between 22 and 30 kg of eq. CO2/ha·day. However, it does not seem to be feasible if PCM prices (8€/kg) do not decrease significantly.

Suggested Citation

  • Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, J. Ignacio, 2017. "Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 103(C), pages 570-581.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:570-581
    DOI: 10.1016/j.renene.2016.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    2. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, Juan Ignacio, 2016. "LCA & LCCA of a PCM application to control root zone temperatures of hydroponic crops in comparison with conventional root zone heating systems," Renewable Energy, Elsevier, vol. 85(C), pages 1079-1089.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    2. Sławomir Kurpaska & Katarzyna Wolny-Koładka & Mateusz Malinowski & Klaudia Tomaszek & Hubert Latała, 2023. "Thermal-Mass and Microbiological Analysis of Forced Air Flow through the Stone Heat Accumulator Bed," Energies, MDPI, vol. 16(11), pages 1-22, May.
    3. Wei, Kun & Wang, Yachuan & Ma, Biao, 2019. "Effects of microencapsulated phase change materials on the performance of asphalt binders," Renewable Energy, Elsevier, vol. 132(C), pages 931-940.
    4. Calabrese, Luigi & Brancato, Vincenza & Paolomba, Valeria & Proverbio, Edoardo, 2019. "An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages," Renewable Energy, Elsevier, vol. 138(C), pages 1018-1027.
    5. Roberta Di Bari & Rafael Horn & Björn Nienborg & Felix Klinker & Esther Kieseritzky & Felix Pawelz, 2020. "The Environmental Potential of Phase Change Materials in Building Applications. A Multiple Case Investigation Based on Life Cycle Assessment and Building Simulation," Energies, MDPI, vol. 13(12), pages 1-30, June.
    6. Satoshi Takeya & Sanehiro Muromachi & Tatsuo Maekawa & Yoshitaka Yamamoto & Hiroko Mimachi & Takahiro Kinoshita & Tetsuro Murayama & Hiroki Umeda & Dong-Hyuk Ahn & Yasunaga Iwasaki & Hidenori Hashimot, 2017. "Design of Ecological CO 2 Enrichment System for Greenhouse Production using TBAB + CO 2 Semi-Clathrate Hydrate," Energies, MDPI, vol. 10(7), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    3. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    4. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    5. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    7. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    8. Moreno, Pere & Miró, Laia & Solé, Aran & Barreneche, Camila & Solé, Cristian & Martorell, Ingrid & Cabeza, Luisa F., 2014. "Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications," Applied Energy, Elsevier, vol. 125(C), pages 238-245.
    9. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    10. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    11. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    12. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    13. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    15. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Abednego Oscar Tanuwijava & Ching Jenq Ho & Chi-Ming Lai & Chao-Yang Huang, 2013. "Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications," Energies, MDPI, vol. 6(8), pages 1-15, August.
    17. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, Juan Ignacio, 2016. "LCA & LCCA of a PCM application to control root zone temperatures of hydroponic crops in comparison with conventional root zone heating systems," Renewable Energy, Elsevier, vol. 85(C), pages 1079-1089.
    18. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    19. Gutierrez, Andrea & Ushak, Svetlana & Galleguillos, Hector & Fernandez, Angel & Cabeza, Luisa F. & Grágeda, Mario, 2015. "Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material," Applied Energy, Elsevier, vol. 154(C), pages 616-621.
    20. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:570-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.