IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp736-755.html
   My bibliography  Save this article

Review of bioclimatic architecture strategies for achieving thermal comfort

Author

Listed:
  • Manzano-Agugliaro, Francisco
  • Montoya, Francisco G.
  • Sabio-Ortega, Andrés
  • García-Cruz, Amós

Abstract

The residential sector consumes a significant amount of energy worldwide. Therefore, it is important to study, analyse and implement bioclimatic architectural systems that contribute to the reduction of energy consumption while considering the possible construction solutions offered at both passive and active levels. The present study conducted a comprehensive analysis that was stratified into three large blocks. The first block examined the concept of bioclimatic architecture. The second examined the bioclimatic architecture construction strategies as a function of each climate zone with the objective of achieving the greatest climate comfort level within a specific building. Fourteen climate zones were established and recommended according to the possible strategies that would facilitate reductions in energy consumption. The third block analysed the principal scientific research trends in this field and highlighted the use of vernacular architecture strategies, experimentation with bioclimatic architecture construction, application of innovative bioclimatic architecture strategies, promotion of bioclimatic architecture, use of bioclimatic architecture in urban planning, inclusion of bioclimatic lessons in study plans and development of energy saving technologies to support bioclimatic architecture. The extensive review described in this paper allowed us to conclude that certain bioclimatic architecture strategies that have been adopted in specific countries could be exported to other areas with similar climates because they were proven to be good functional design strategies that resulted in large energy saving measures (each in its corresponding climate) related to solar protection, humidification or temperature increases.

Suggested Citation

  • Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:736-755
    DOI: 10.1016/j.rser.2015.04.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115003652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corbella, O.D. & Magalhães, M.A.A.A., 2008. "Conceptual differences between the bioclimatic urbanism for Europe and for the tropical humid climate," Renewable Energy, Elsevier, vol. 33(5), pages 1019-1023.
    2. Jingxia, Li, 1996. "The bioclimatic features of vernacular architecture in China," Renewable Energy, Elsevier, vol. 8(1), pages 305-308.
    3. Schiller, Silvia de & Evans, John Martin, 1994. "Teaching architects low energy and climate concious design," Renewable Energy, Elsevier, vol. 5(5), pages 1147-1150.
    4. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    5. Gallo, Cettina, 1994. "Bioclimatic architecture," Renewable Energy, Elsevier, vol. 5(5), pages 1021-1027.
    6. Sala, Marco & Nelli, Lucia Ceccherini, 1994. "Bioclimatic architecture in Europe; An handbook in advanced technology," Renewable Energy, Elsevier, vol. 5(5), pages 1173-1177.
    7. Butera, Federico M., 1994. "Energy and buildings in Mediterranean countries: Present and future," Renewable Energy, Elsevier, vol. 5(5), pages 942-949.
    8. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    9. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    10. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K. & Akiyama, T., 2011. "Development of phase change materials based microencapsulated technology for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1373-1391, February.
    11. Coch, Helena, 1998. "Chapter 4--Bioclimatism in vernacular architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 67-87, June.
    12. Omer, Abdeen Mustafa, 2008. "Renewable building energy systems and passive human comfort solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1562-1587, August.
    13. De Herde, A. & Nihoul, A., 1994. "Overheating and daylighting in commercial buildings," Renewable Energy, Elsevier, vol. 5(5), pages 917-919.
    14. Gallo, Cettina, 1996. "Initiatives in the field of university education for bioclimatic architecture," Renewable Energy, Elsevier, vol. 8(1), pages 315-318.
    15. Ferrante, A. & Mihalakakou, G. & Odolini, C., 1997. "The rehabilitation investigation of a historical urban area," Renewable Energy, Elsevier, vol. 10(4), pages 577-584.
    16. Sala, Marco, 1998. "Advanced bioclimatic architecture for buildings," Renewable Energy, Elsevier, vol. 15(1), pages 271-276.
    17. Nicoletti, Manfredi, 1998. "Architectural expression and low energy design," Renewable Energy, Elsevier, vol. 15(1), pages 32-41.
    18. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    19. Ajibola, Kolawole, 2001. "Design for comfort in Nigeria — a bioclimatic approach," Renewable Energy, Elsevier, vol. 23(1), pages 57-76.
    20. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    21. Rupp, Ricardo Forgiarini & Ghisi, Enedir, 2014. "What is the most adequate method to assess thermal comfort in hybrid commercial buildings located in hot-humid summer climate?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 449-462.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    2. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    3. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    4. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    5. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    6. Silva, Tiago & Vicente, Romeu & Amaral, Cláudia & Figueiredo, António, 2016. "Thermal performance of a window shutter containing PCM: Numerical validation and experimental analysis," Applied Energy, Elsevier, vol. 179(C), pages 64-84.
    7. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    8. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    9. He, Fang & Wang, Xiaodong & Wu, Dezhen, 2015. "Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor," Renewable Energy, Elsevier, vol. 74(C), pages 689-698.
    10. Al-Abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Lim, C.H. & Th, Abdulrahman, 2012. "Review of thermal energy storage for air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5802-5819.
    11. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    12. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    13. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    15. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    16. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    17. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    18. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    19. Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
    20. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:736-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.