IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i21p9455-d1778930.html
   My bibliography  Save this article

Machine Learning-Based Prediction of Root-Zone Temperature Using Bio-Based Phase-Change Material in Greenhouse

Author

Listed:
  • Hasan Kaan Kucukerdem

    (Department of Biosystem Engineering, Faculty of Agriculture, Iğdır University, Iğdır 76000, Türkiye)

  • Hasan Huseyin Ozturk

    (Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Çukurova University, Adana 01330, Türkiye)

Abstract

The study focuses on the experimental investigation of the impact of using coconut oil (CO) as a phase-change material (PCM) for heat storage on the root-zone temperature within a greenhouse in Adana, Türkiye. The study examines the efficacy of PCM as latent heat-storage material and predicts root-zone temperature using three machine learning algorithms. The dataset used in the analysis consists of 2658 data at hourly resolution with six variables from February to April in 2022. A greenhouse with PCM shows a remarkable increase in both ambient (0.9–4.1 °C) and root-zone temperatures (1.1–1.6 °C) especially during the periods without sunlight compared to a conventional greenhouse. Machine learning algorithms used in this study include Multivariate Adaptive Regression Splines (MARS), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost). Hyperparameter tuning was performed for all three models to control model complexity, flexibility, learning rate, and regularization level, thereby preventing overfitting and underfitting. Among these algorithms, R 2 values for testing data listed from largest to smallest are MARS (0.95), SVR (0.96), and XGBoost (0.97), respectively. The results emphasize the potential of machine learning approaches for applying thermal energy storage systems to agricultural greenhouses. In addition, it provides insight into a net-zero energy greenhouse approach by storing heat in a bio-based PCM, alongside its implementation and operational procedures.

Suggested Citation

  • Hasan Kaan Kucukerdem & Hasan Huseyin Ozturk, 2025. "Machine Learning-Based Prediction of Root-Zone Temperature Using Bio-Based Phase-Change Material in Greenhouse," Sustainability, MDPI, vol. 17(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9455-:d:1778930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/21/9455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/21/9455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, J. Ignacio, 2017. "Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 103(C), pages 570-581.
    2. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Joudi, Khalid A. & Farhan, Ammar A., 2014. "Greenhouse heating by solar air heaters on the roof," Renewable Energy, Elsevier, vol. 72(C), pages 406-414.
    4. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.
    5. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, Juan Ignacio, 2016. "LCA & LCCA of a PCM application to control root zone temperatures of hydroponic crops in comparison with conventional root zone heating systems," Renewable Energy, Elsevier, vol. 85(C), pages 1079-1089.
    6. Misbaudeen Aderemi Adesanya & Anis Rabiu & Qazeem Opeyemi Ogunlowo & Min-Hwi Kim & Timothy Denen Akpenpuun & Wook-Ho Na & Kuljeet Singh Grewal & Hyun-Woo Lee, 2025. "Experimental Evaluation of Hybrid Renewable and Thermal Energy Storage Systems for a Net-Zero Energy Greenhouse: A Case Study of Yeoju-Si," Energies, MDPI, vol. 18(10), pages 1-23, May.
    7. Yong Guan & Yan Chen & Lu Zhou & Zhixiong Wei & Wanling Hu & Yuchao Yang, 2024. "The Thermal Properties of an Active–Passive Heat Storage Wall System Incorporating Phase Change Materials in a Chinese Solar Greenhouse," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    8. Oladayo S. Ajani & Member Joy Usigbe & Esther Aboyeji & Daniel Dooyum Uyeh & Yushin Ha & Tusan Park & Rammohan Mallipeddi, 2023. "Greenhouse Micro-Climate Prediction Based on Fixed Sensor Placements: A Machine Learning Approach," Mathematics, MDPI, vol. 11(14), pages 1-14, July.
    9. Cibele Eller & Mohamad Rida & Katharina Boudier & Caio Otoni & Gabriela Celani & Lucila Labaki & Sabine Hoffmann, 2021. "Climate-Based Analysis for the Potential Use of Coconut Oil as Phase Change Material in Buildings," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Ameen & Wang Xiaochan & Muhammad Yaseen & Muhammad Umair & Khurram Yousaf & Zhenjie Yang & Skakeel Ahmed Soomro, 2018. "Performance Evaluation of Root Zone Heating System Developed with Sustainable Materials for Application in Low Temperatures," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    2. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    3. Imtiaz Hussain, M. & Ali, Asma & Lee, Gwi Hyun, 2015. "Performance and economic analyses of linear and spot Fresnel lens solar collectors used for greenhouse heating in South Korea," Energy, Elsevier, vol. 90(P2), pages 1522-1531.
    4. Xinge, Chen & Jianbin, Zang & Gang, Wu & Hao, Liang & Yunfan, Yang & Dawei, Shi & Chaoqing, Feng, 2024. "Coupled system for underground heating exchange and solar heat-humidity regulation in greenhouse: Experimental study and simulation analysis," Energy, Elsevier, vol. 301(C).
    5. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    6. Gourdo, L. & Fatnassi, H. & Tiskatine, R. & Wifaya, A. & Demrati, H. & Aharoune, A. & Bouirden, L., 2019. "Solar energy storing rock-bed to heat an agricultural greenhouse," Energy, Elsevier, vol. 169(C), pages 206-212.
    7. Shao, Junyan & Chen, Houhe & Çelik, Özgür & Wei, Baoze & Vasquez, Juan C. & Guerrero, Josep M., 2025. "Trade-off both in the clearing market and ancillary services markets for agriculture park operator: A strategic bilevel multi-objective programming," Applied Energy, Elsevier, vol. 388(C).
    8. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    9. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    10. Giordano, Nicolò & Raymond, Jasmin, 2019. "Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Xu, Demin & Fei, Shuaipeng & Wang, Zhi & Zhu, Jinyu & Ma, Yuntao, 2024. "Optimum design of Chinese solar greenhouses for maximum energy availability," Energy, Elsevier, vol. 304(C).
    12. Calabrese, Luigi & Brancato, Vincenza & Paolomba, Valeria & Proverbio, Edoardo, 2019. "An experimental study on the corrosion sensitivity of metal alloys for usage in PCM thermal energy storages," Renewable Energy, Elsevier, vol. 138(C), pages 1018-1027.
    13. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    14. Roberta Di Bari & Rafael Horn & Björn Nienborg & Felix Klinker & Esther Kieseritzky & Felix Pawelz, 2020. "The Environmental Potential of Phase Change Materials in Building Applications. A Multiple Case Investigation Based on Life Cycle Assessment and Building Simulation," Energies, MDPI, vol. 13(12), pages 1-30, June.
    15. Zhao, Xingqi & Ke, Xiaojun & Jiang, Songyu, 2024. "Spatial impact of green finance reform pilot zones on environmental efficiency: A pathway to mitigating China's energy trilemma," Energy, Elsevier, vol. 312(C).
    16. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, J. Ignacio, 2017. "Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 103(C), pages 570-581.
    17. Hyung-Kweon Kim & Young-Sun Ryou & Young-Hwa Kim & Tae-Seok Lee & Sung-Sik Oh & Yong-Hyeon Kim, 2021. "Estimating the Thermal Properties of the Cover and the Floor in a Plastic Greenhouse," Energies, MDPI, vol. 14(7), pages 1-11, April.
    18. Sławomir Kurpaska & Katarzyna Wolny-Koładka & Mateusz Malinowski & Klaudia Tomaszek & Hubert Latała, 2023. "Thermal-Mass and Microbiological Analysis of Forced Air Flow through the Stone Heat Accumulator Bed," Energies, MDPI, vol. 16(11), pages 1-22, May.
    19. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    20. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9455-:d:1778930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.