IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v97y2016icp488-497.html
   My bibliography  Save this article

Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study

Author

Listed:
  • Yuan, Yanping
  • Zhang, Nan
  • Li, Tianyu
  • Cao, Xiaoling
  • Long, Weiyue

Abstract

The effects of adding GnPs (graphene nanoplatelets) (nanoscale) and EG (expanded graphite) (microscale) were investigated to improve the thermal performance of PA-SA (palmitic-stearic acid) eutectic mixture as a PCM (phase change material). Carbon materials were dispersed into PA-SA with loadings of 1wt%, 2wt%, 4wt%, and 8wt%. The thermal properties measurement results show that the phase change latent heats of composite PCMs decreased with increasing loadings. The thermal conductivities of the composite PCMs were measured by the transient plane heat source method. Both GnPs and EG can effectively improve the thermal conductivity of PA-SA, but EG is more effective due to its worm-like structure. For the highest loading (8wt%), the thermal conductivity of the composite PCMs is 2.7 times higher with GnPs and 15.8 times higher with EG than that of PA-SA at 25 °C. The thermal energy storage and release rates of the composite PCMs also increased due to the high thermal conductivity of carbon materials. The density of composite PCMs were found to increase with the addition of GnPs but to decrease with EG. All composite PCMs show good thermal reliability. This work shows that EG has the greater potential to enhance the thermal energy storage performance of PCMs.

Suggested Citation

  • Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
  • Handle: RePEc:eee:energy:v:97:y:2016:i:c:p:488-497
    DOI: 10.1016/j.energy.2015.12.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
    2. Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
    3. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    4. Li, Min, 2013. "A nano-graphite/paraffin phase change material with high thermal conductivity," Applied Energy, Elsevier, vol. 106(C), pages 25-30.
    5. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    6. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    7. Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
    8. Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
    9. Fang, Guiyin & Tang, Fang & Cao, Lei, 2014. "Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 237-259.
    10. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    11. Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2018. "Energy-Saving Analysis of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 11(1), pages 1-18, January.
    2. Feng, Guohui & Liu, Ming & Huang, Kailiang & Qiang, Xiaoqian & Chang, Qunpeng, 2019. "Development of a math module of shell and tube phase-change energy storage system used in TRNSYS," Energy, Elsevier, vol. 183(C), pages 428-436.
    3. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    4. Ding, Jie & Wu, Xiaodong & Shen, Xiaodong & Cui, Sheng & Chen, Xiangbao, 2020. "A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation," Energy, Elsevier, vol. 210(C).
    5. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    6. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2017. "Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 10(12), pages 1-17, December.
    7. Chen, Guijun & Su, Yunpeng & Jiang, Dongyue & Pan, Lujun & Li, Shuai, 2020. "An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications," Applied Energy, Elsevier, vol. 264(C).
    8. Zhang, Xialan & Lin, Qilang & Luo, Huijun & Luo, Shiyuan, 2020. "Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 260(C).
    9. Bashiri Rezaie, Ali & Montazer, Majid, 2019. "One-step preparation of magnetically responsive nano CuFe2O4/fatty acids/polyester composite for dynamic thermal energy management applications," Renewable Energy, Elsevier, vol. 143(C), pages 1839-1851.
    10. Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
    11. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    12. Bashiri Rezaie, Ali & Montazer, Majid, 2020. "Shape-stable thermo-responsive nano Fe3O4/fatty acids/PET composite phase-change material for thermal energy management and saving applications," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    2. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    4. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    5. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    6. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    7. Nomura, Takahiro & Tabuchi, Kazuki & Zhu, Chunyu & Sheng, Nan & Wang, Shuangfeng & Akiyama, Tomohiro, 2015. "High thermal conductivity phase change composite with percolating carbon fiber network," Applied Energy, Elsevier, vol. 154(C), pages 678-685.
    8. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    9. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.
    10. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    11. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    12. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    13. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    14. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    15. Song, Yanlin & Zhang, Nan & Yuan, Yanping & Yang, Li & Cao, Xiaoling, 2019. "Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory," Energy, Elsevier, vol. 170(C), pages 752-762.
    16. Vélez, C. & Khayet, M. & Ortiz de Zárate, J.M., 2015. "Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane," Applied Energy, Elsevier, vol. 143(C), pages 383-394.
    17. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    18. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Johra, Hicham & Heiselberg, Per, 2017. "Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 19-32.
    20. Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:97:y:2016:i:c:p:488-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.