IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2001-d161336.html
   My bibliography  Save this article

Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters

Author

Listed:
  • Adnan Rasheed

    (Department of Agricultural Engineering, Kyungpook National University, Daegu 702-701, Korea
    These authors contributed equally to this work.)

  • Jong Won Lee

    (Department of Horticulture Environment System, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54874, Korea
    These authors contributed equally to this work.)

  • Hyun Woo Lee

    (Department of Agricultural Engineering, Kyungpook National University, Daegu 702-701, Korea
    Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 702-701, Korea)

Abstract

Energy management of the greenhouse is considered to be one of the most important challenges of greenhouse farming. Energy saving measures need considered, besides applying energy supplying techniques. To address this issue, a model was developed to simulate the thermal environment of a greenhouse using a Transient Systems Simulation Program (TRNSYS 17) as a building energy simulation (BES) platform. The model was calibrated by modifying the input parameters to minimize the uncertainties obtained from the results. Nash-Sutcliffe efficiency coefficients of 0.958 and 0.983 showed good agreement between the computed and experimental results. The proposed model was used to evaluate the effects of greenhouse design parameters, including roof shape, orientation, double-glazing, natural ventilation, coverings and their thickness, on its energy conservation capacity. It was found that the most suitable design for a greenhouse located in Daegu (latitude 35.53° N, longitude 128.36° E) South Korea would be east-west (E-W) oriented, with a gothic-shaped roof and double-glazing of PMMA (Polymethylmethacrylate) covering. Natural ventilation reduced the inside temperature of greenhouse, thereby reducing the energy demand of cooling. The model developed can help greenhouse farmers and researchers make pre-design decisions regarding greenhouse construction, taking their local environment and specific needs into consideration.

Suggested Citation

  • Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2001-:d:161336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Munawar Iqbal & David T. Llewellyn, 2002. "Introduction," Chapters, in: Munawar Iqbal & David T. Llewellyn (ed.), Islamic Banking and Finance, chapter 1, Edward Elgar Publishing.
    2. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    3. Zhang, Liang & Xu, Peng & Mao, Jiachen & Tang, Xu & Li, Zhengwei & Shi, Jianguo, 2015. "A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study," Applied Energy, Elsevier, vol. 156(C), pages 213-222.
    4. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    5. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    6. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    7. Watts, David & Jara, Danilo, 2011. "Statistical analysis of wind energy in Chile," Renewable Energy, Elsevier, vol. 36(5), pages 1603-1613.
    8. Francesco Asdrubali & Franco Cotana & Antonio Messineo, 2012. "On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period," Energies, MDPI, vol. 5(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misbaudeen Aderemi Adesanya & Wook-Ho Na & Anis Rabiu & Qazeem Opeyemi Ogunlowo & Timothy Denen Akpenpuun & Adnan Rasheed & Yong-Cheol Yoon & Hyun-Woo Lee, 2022. "TRNSYS Simulation and Experimental Validation of Internal Temperature and Heating Demand in a Glass Greenhouse," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    2. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    4. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    5. Adnan Rasheed & Wook Ho Na & Jong Won Lee & Hyeon Tae Kim & Hyun Woo Lee, 2019. "Optimization of Greenhouse Thermal Screens for Maximized Energy Conservation," Energies, MDPI, vol. 12(19), pages 1-20, September.
    6. Saleh Mohammadi & Esmail Khalife & Mohammad Kaveh & Amir Hosein Afkari Sayyah & Ali Mohammad Nikbakht & Mariusz Szymanek & Jacek Dziwulski, 2021. "Comparison of Optimized and Conventional Models of Passive Solar Greenhouse—Case Study: The Indoor Air Temperature, Irradiation, and Energy Demand," Energies, MDPI, vol. 14(17), pages 1-15, August.
    7. Adnan Rasheed & Jong Won Lee & Hyeon Tae Kim & Hyun Woo Lee, 2022. "Study on Heating and Cooling Performance of Air-to-Water Heat Pump System for Protected Horticulture," Energies, MDPI, vol. 15(15), pages 1-19, July.
    8. Anna-Maria N. Dimitropoulou & Vasileios Z. Maroulis & Eugenia N. Giannini, 2023. "A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe," Energies, MDPI, vol. 16(19), pages 1-27, September.
    9. Adnan Rasheed & Wook Ho Na & Jong Won Lee & Hyeon Tae Kim & Hyun Woo Lee, 2021. "Development and Validation of Air-to-Water Heat Pump Model for Greenhouse Heating," Energies, MDPI, vol. 14(15), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    2. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    3. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    4. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    5. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    6. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    7. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    8. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    9. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    11. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    12. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
    13. Golzar, Farzin & Heeren, Niko & Hellweg, Stefanie & Roshandel, Ramin, 2018. "A novel integrated framework to evaluate greenhouse energy demand and crop yield production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 487-501.
    14. Chan Kyu Lee & Mo Chung & Ki-Yeol Shin & Yong-Hoon Im & Si-Won Yoon, 2019. "A Study of the Effects of Enhanced Uniformity Control of Greenhouse Environment Variables on Crop Growth," Energies, MDPI, vol. 12(9), pages 1-24, May.
    15. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    16. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    17. Saleh Mohammadi & Esmail Khalife & Mohammad Kaveh & Amir Hosein Afkari Sayyah & Ali Mohammad Nikbakht & Mariusz Szymanek & Jacek Dziwulski, 2021. "Comparison of Optimized and Conventional Models of Passive Solar Greenhouse—Case Study: The Indoor Air Temperature, Irradiation, and Energy Demand," Energies, MDPI, vol. 14(17), pages 1-15, August.
    18. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    19. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    20. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2001-:d:161336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.