IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1749-d229473.html
   My bibliography  Save this article

A Study of the Effects of Enhanced Uniformity Control of Greenhouse Environment Variables on Crop Growth

Author

Listed:
  • Chan Kyu Lee

    (Department of Mechanical Engineering, Graduate School of Yeungnam University, 280, Daehak-Ro, Gyeongsan 38541, Korea)

  • Mo Chung

    (Department of Mechanical Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan 38541, Korea)

  • Ki-Yeol Shin

    (Department of Mechanical Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan 38541, Korea)

  • Yong-Hoon Im

    (Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea)

  • Si-Won Yoon

    (Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea)

Abstract

In order to ensure high crop yield and good quality in greenhouse horticulture, the major environment control variables, such as temperature, humidity, and CO 2 concentration, etc., need to be controlled properly, in order to reduce harmful effects on crop growth by minimizing the fluctuation of the thermal condition. Even though a hot water-based heating system is evidently superior to a hot air-based heating system, in terms of the thermally stable condition or energy saving, a hot air-based heating system has occupied the domestic market due to its economic efficiency from an initial investment cost saving. However, the intrinsic drawbacks of a hot air-based heating system, being more frequent variation of thermal variables and an inordinate disturbance on crops due to its convective heat delivery nature, are believed to be the main reasons for the insufficient crop yield and/or the quality deterioration. In addition, the current thermal environment monitoring system in a greenhouse, in which a sole sensor node usually covers a large part of cultivating area, seems to have a profound need of improvement in order to resolve those problems, in that the assumption of thermal uniform condition, which is adequate for a sole sensor node system, cannot be ensured in some cases. In this study, the qualitative concept of the new control variable—the degree of uniformity—is suggested as an indicator to seek ways of enhancing the crop yield and its quality based on the multiple sensor nodes system with a wireless sensor network. In contrast to a conventional monitoring system, for which a newly suggested concept of qualitative variable cannot be estimated at all, the multiple sensor nodes-based thermal monitoring system can provide more accurate and precise sensing, which enables the degree of uniformity to be checked in real-time and thus more precise control becomes possible as a consequence. From the analysis of the results of the experiment and simulation, it is found that the crops in plastic vinyl houses can be exposed to a serious level of non-uniform thermal condition. For instance, the temperature difference in the longitudinal and widthwise direction is 3.0 °C and 6.5 °C, respectively for the case of 75 × 8 m dimension greenhouse during a typical winter season, and it can be hypothesized that this level of non-uniformity might cause considerable damage to crop growth. In this paper, several variants of control systems, within the framework of the multiple sensor nodes system, is proposed to provide a more thermally-stable cultivating environment and the experimental verification is carried out for different scales of test greenhouses. The results showed that a simple change of heating mode (i.e., from a hot air- to a hot water-based heating system) can bring about a significant improvement for the non-uniformity of temperature (more or less 80%), and an additional countermeasure, with local heat flux control, can lead to a supplementary cut of non-uniformity up to 90%. Among the several variants of local heat flux control systems, the hydraulic proportional mass flow control valve system was proven to represent the best performance, and it can be hypothesized that the newly suggested qualitative variable—the degree of uniformity—with the multiple sensor nodes system can be a good alternative for seeking enhanced cultivating performance, being higher crop yield and better quality along with energy cost saving.

Suggested Citation

  • Chan Kyu Lee & Mo Chung & Ki-Yeol Shin & Yong-Hoon Im & Si-Won Yoon, 2019. "A Study of the Effects of Enhanced Uniformity Control of Greenhouse Environment Variables on Crop Growth," Energies, MDPI, vol. 12(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1749-:d:229473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongtao Shen & Ruihua Wei & Lihong Xu, 2018. "Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature," Energies, MDPI, vol. 11(1), pages 1-17, January.
    2. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    3. Jara Laso & Daniel Hoehn & María Margallo & Isabel García-Herrero & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Ian Vázquez-Rowe & Angel Irabien & Rubén Aldaco, 2018. "Assessing Energy and Environmental Efficiency of the Spanish Agri-Food System Using the LCA/DEA Methodology," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    5. Giuseppina Nicolosi & Roberto Volpe & Antonio Messineo, 2017. "An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse," Energies, MDPI, vol. 10(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiming Li & Fujun Sun & Wenbin Shi & Xingan Liu & Tianlai Li, 2022. "Numerical Simulation of Ventilation Performance in Mushroom Solar Greenhouse Design," Energies, MDPI, vol. 15(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    3. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    4. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    5. Beata Milewska & Dariusz Milewski, 2022. "Implications of Increasing Fuel Costs for Supply Chain Strategy," Energies, MDPI, vol. 15(19), pages 1-14, September.
    6. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    7. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    8. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    9. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    10. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    11. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    12. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    13. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    14. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    15. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    16. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    17. Colamartino, Chiara & Dipierro, Anna Rita & Toma, Pierluigi & Frittelli, Massimo, 2023. "What lies behind the success of Italian GIs products? Questioning tradition in consortia via aggregated conditional efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    18. Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    19. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1749-:d:229473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.