IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p903-d844163.html
   My bibliography  Save this article

Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics

Author

Listed:
  • Uk-Hyeon Yeo

    (Agriculture, Animal & Aquaculture Intelligence Research Center, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea)

  • Sang-Yeon Lee

    (Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Korea)

  • Se-Jun Park

    (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Korea)

  • Jun-Gyu Kim

    (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Korea)

  • Young-Bae Choi

    (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Korea)

  • Rack-Woo Kim

    (Department of Smart Farm Engineering, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan-eup, Yesan-gun 32439, Korea)

  • Jong Hwa Shin

    (Department of Horticulture and Breeding, College of Life Sciences and Biotechnology, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Korea)

  • In-Bok Lee

    (Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Korea
    Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanakgu, Seoul 08826, Korea)

Abstract

Energy management of a building-integrated rooftop greenhouse (BiRTG) is considered one of the important factors. Accordingly, the interest in energy simulation models has increased. Energy load computed from the simulation model can be used for appropriate capacity calculation and optimal operation of the environmental control system. In particular, because the thermal environment of greenhouses is sensitive to the external weather environment, dynamic energy simulations, such as building energy simulation (BES), play an essential role in understanding the complex mechanisms of heat transfer in greenhouses. Depending on the type and crop density, there is a significant difference in the thermal energy loads of greenhouses. Furthermore, ventilation is also an important factor affecting the energy input of the greenhouse. Therefore, this study aimed to design and validate BES models considering the crop and ventilation characteristics of a naturally ventilated greenhouse before designing and evaluating a BES model for the BiRTG. First, the BES module for the greenhouse and crop models was designed using field-measured data, and the ventilation characteristics were analysed using computational fluid dynamics (CFD). The greenhouse BES model was designed and then validated by comparing air temperature (T a ) and relative humidity (RH) measured at the greenhouse with the BES-computed results of the greenhouse model. The results showed that the average absolute error of T a was 1.57 °C and RH was 7.7%. The R 2 of the designed BES model for T a and RH were 0.96 and 0.89, respectively. These procedures and sub-modules developed were applied to the energy load calculation of BiRTG.

Suggested Citation

  • Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:903-:d:844163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Ortega-Farias, Samuel Orlando & Olioso, A. & Fuentes, S. & Valdes, H., 2006. "Latent heat flux over a furrow-irrigated tomato crop using Penman-Monteith equation with a variable surface canopy resistance," Agricultural Water Management, Elsevier, vol. 82(3), pages 421-432, April.
    3. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    4. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    5. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    6. Zhang, Liang & Xu, Peng & Mao, Jiachen & Tang, Xu & Li, Zhengwei & Shi, Jianguo, 2015. "A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study," Applied Energy, Elsevier, vol. 156(C), pages 213-222.
    7. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    8. Hicham Fatnassi & Thierry Boulard & Christine Poncet & Nikolaos Katsoulas & Thomas Bartzanas & Murat Kacira & Habtamu Giday & In-Bok Lee, 2021. "Computational Fluid Dynamics Modelling of the Microclimate within the Boundary Layer of Leaves Leading to Improved Pest Control Management and Low-Input Greenhouse," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    9. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    10. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    11. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    12. Alinejad, T. & Yaghoubi, M. & Vadiee, A., 2020. "Thermo-environomic assessment of an integrated greenhouse with an adjustable solar photovoltaic blind system," Renewable Energy, Elsevier, vol. 156(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Se-Jun Park & In-Bok Lee & Sang-Yeon Lee & Jun-Gyu Kim & Young-Bae Choi & Cristina Decano-Valentin & Jeong-Hwa Cho & Hyo-Hyeog Jeong & Uk-Hyeon Yeo, 2022. "Numerical Analysis of Ventilation Efficiency of a Korean Venlo-Type Greenhouse with Continuous Roof Vents," Agriculture, MDPI, vol. 12(9), pages 1-22, August.
    2. Drottberger, Annie & Zhang, Yizhi & Yong, Jean Wan Hong & Dubois, Marie-Claude, 2023. "Urban farming with rooftop greenhouses: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    2. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    3. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    5. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    6. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    7. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    8. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    9. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    10. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    11. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    12. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    13. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    14. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    15. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    16. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    17. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
    18. Chan Kyu Lee & Mo Chung & Ki-Yeol Shin & Yong-Hoon Im & Si-Won Yoon, 2019. "A Study of the Effects of Enhanced Uniformity Control of Greenhouse Environment Variables on Crop Growth," Energies, MDPI, vol. 12(9), pages 1-24, May.
    19. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    20. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:903-:d:844163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.