IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920314628.html
   My bibliography  Save this article

Energy savings in greenhouses by transition from high-pressure sodium to LED lighting

Author

Listed:
  • Katzin, David
  • Marcelis, Leo F.M.
  • van Mourik, Simon

Abstract

Greenhouses in high latitudes consume vast amounts of energy for heating and supplemental lighting. Light emitting diodes (LEDs) have been suggested as having great potential for reducing greenhouse energy use, as they are extremely efficient at converting electricity to light. However, LEDs emit very little heat, which must be compensated by the greenhouse heating system. Thus, it is unclear how much energy can be saved by LEDs when the need for extra heating is taken into account. This study presents a first analysis of the energy demands for greenhouses transitioning from high-pressure sodium (HPS) to LED lighting, providing a quantification of the total energy savings achieved by LEDs. Model simulations using GreenLight, an open source greenhouse model, were used to examine a wide range of climates, from subtropical China to arctic Sweden, and multiple settings for indoor temperature, lamp intensity, lighting duration, and insulation. In most cases, the total energy saving by transition to LEDs was 10–25%. This value was linearly correlated with the fraction of energy used for lighting before the transition, which was 40–80%. In all scenarios, LEDs reduced the energy demand for lighting but increased the demand for heating. Since energy for lighting and heating is often derived from different origins, the benefits of a transition to LEDs depend on the environmental and financial costs of the available energy sources. The framework provided here can be used to select lighting installations that make optimal use of available energy resources in the most efficient and sustainable manner.

Suggested Citation

  • Katzin, David & Marcelis, Leo F.M. & van Mourik, Simon, 2021. "Energy savings in greenhouses by transition from high-pressure sodium to LED lighting," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314628
    DOI: 10.1016/j.apenergy.2020.116019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Beveren, P.J.M. & Bontsema, J. & van Straten, G. & van Henten, E.J., 2015. "Optimal control of greenhouse climate using minimal energy and grower defined bounds," Applied Energy, Elsevier, vol. 159(C), pages 509-519.
    2. Van Beveren, P.J.M. & Bontsema, J. & Van Straten, G. & Van Henten, E.J., 2015. "Minimal heating and cooling in a modern rose greenhouse," Applied Energy, Elsevier, vol. 137(C), pages 97-109.
    3. Golzar, Farzin & Heeren, Niko & Hellweg, Stefanie & Roshandel, Ramin, 2018. "A novel integrated framework to evaluate greenhouse energy demand and crop yield production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 487-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    2. Maria Ravani & Konstantinos Georgiou & Stefania Tselempi & Nikolaos Monokrousos & Georgios K. Ntinas, 2023. "Carbon Footprint of Greenhouse Production in EU—How Close Are We to Green Deal Goals?," Sustainability, MDPI, vol. 16(1), pages 1-39, December.
    3. Jaeyoung Heo & Miki Kozaki & Takaaki Koga & Kotaroh Hirate & Hyun Bae Kim, 2022. "Investigation of the Visual Environment of Railway Station Stairs Using Qualitative and Quantitative Evaluation Methods," Energies, MDPI, vol. 15(19), pages 1-19, September.
    4. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    5. Yuan, Yu & Ji, Yaning & Wang, Wei & Shi, Dawei & Hai, Long & Ma, Qianlei & Yang, Qichang & Xie, Yuming & Li, Bin & Wu, Gang & Ma, Lingling, 2023. "Balancing energy harvesting and crop production in a nanofluid spectral splitting covering for an active solar greenhouse," Energy, Elsevier, vol. 278(C).
    6. Dennis Dannehl & Thomas Schwend & Daniel Veit & Uwe Schmidt, 2021. "LED versus HPS Lighting: Effects on Water and Energy Consumption and Yield Quality in Lettuce Greenhouse Production," Sustainability, MDPI, vol. 13(15), pages 1-11, August.
    7. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Daizhong Su & Jose L. Casamayor & Xuemin Xu, 2021. "An Integrated Approach for Eco-Design and Its Application in LED Lighting Product Development," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    9. Mahrokh Farvardin & Morteza Taki & Shiva Gorjian & Edris Shabani & Julio C. Sosa-Savedra, 2024. "Assessing the Physical and Environmental Aspects of Greenhouse Cultivation: A Comprehensive Review of Conventional and Hydroponic Methods," Sustainability, MDPI, vol. 16(3), pages 1-34, February.
    10. Zhongyang Ji & Huiru Yu & Jingyi Zhu & Jiwen Li, 2022. "The Influence of Roadmap for China Phasing Out Incandescent Lamps on the Promotion of Energy-Efficient Lighting Products," Sustainability, MDPI, vol. 14(19), pages 1-11, September.
    11. Rona George Allwyn & Rashid Al Abri & Arif Malik & Amer Al-Hinai, 2021. "Economic Analysis of Replacing HPS Lamp with LED Lamp and Cost Estimation to Set Up PV/Battery System for Street Lighting in Oman," Energies, MDPI, vol. 14(22), pages 1-25, November.
    12. Alexander Nauta & Jingjing Han & Syeda Humaira Tasnim & William David Lubitz, 2023. "Performance Evaluation of a Commercial Greenhouse in Canada Using Dehumidification Technologies and LED Lighting: A Modeling Study," Energies, MDPI, vol. 16(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    2. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    3. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    4. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    5. Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
    6. Golzar, Farzin & Heeren, Niko & Hellweg, Stefanie & Roshandel, Ramin, 2018. "A novel integrated framework to evaluate greenhouse energy demand and crop yield production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 487-501.
    7. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    8. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    10. Wenfei Guan & Wenzhong Guo & Fan Chen & Xiaobei Han & Haiguang Wang & Weituo Sun & Qian Zhao & Dongdong Jia & Xiaoming Wei & Qingzhen Zhu, 2024. "Multi-Span Greenhouse Energy Saving by External Insulation: System Design and Implementation," Agriculture, MDPI, vol. 14(2), pages 1-15, February.
    11. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    12. Elham Bolandnazar & Hassan Sadrnia & Abbas Rohani & Francesco Marinello & Morteza Taki, 2023. "Application of Artificial Intelligence for Modeling the Internal Environment Condition of Polyethylene Greenhouses," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    13. Nadal, Ana & Llorach-Massana, Pere & Cuerva, Eva & López-Capel, Elisa & Montero, Juan Ignacio & Josa, Alejandro & Rieradevall, Joan & Royapoor, Mohammad, 2017. "Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context," Applied Energy, Elsevier, vol. 187(C), pages 338-351.
    14. van Beveren, P.J.M. & Bontsema, J. & van Straten, G. & van Henten, E.J., 2015. "Optimal control of greenhouse climate using minimal energy and grower defined bounds," Applied Energy, Elsevier, vol. 159(C), pages 509-519.
    15. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    17. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    18. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Min Zuo & Qing-Chuan Zhang & Seng Lin, 2021. "Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse," Agriculture, MDPI, vol. 11(8), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.