IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3918-3933.html
   My bibliography  Save this article

Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools

Author

Listed:
  • Buytaert, V.
  • Muys, B.
  • Devriendt, N.
  • Pelkmans, L.
  • Kretzschmar, J.G.
  • Samson, R.

Abstract

Biomass is expected to play an increasingly significant role in the ‘greening’ of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.

Suggested Citation

  • Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3918-3933
    DOI: 10.1016/j.rser.2011.07.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111002760
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:eee:ecomod:v:221:y:2010:i:4:p:693-702 is not listed on IDEAS
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Wolf, J. & Bindraban, P. S. & Luijten, J. C. & Vleeshouwers, L. M., 2003. "Exploratory study on the land area required for global food supply and the potential global production of bioenergy," Agricultural Systems, Elsevier, vol. 76(3), pages 841-861, June.
    4. Wagendorp, Tim & Gulinck, Hubert & Coppin, Pol & Muys, Bart, 2006. "Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics," Energy, Elsevier, vol. 31(1), pages 112-125.
    5. Dimitri Devuyst, 2000. "Linking impact assessment and sustainable development at the local level: the introduction of sustainability assessment systems," Sustainable Development, John Wiley & Sons, Ltd., vol. 8(2), pages 67-78.
    6. Daly, Herman E., 1990. "Toward some operational principles of sustainable development," Ecological Economics, Elsevier, vol. 2(1), pages 1-6, April.
    7. Hueting, Roefie & Reijnders, Lucas, 2004. "Broad sustainability contra sustainability: the proper construction of sustainability indicators," Ecological Economics, Elsevier, vol. 50(3-4), pages 249-260, October.
    8. Wiskerke, W.T. & Dornburg, V. & Rubanza, C.D.K. & Malimbwi, R.E. & Faaij, A.P.C., 2010. "Cost/benefit analysis of biomass energy supply options for rural smallholders in the semi-arid eastern part of Shinyanga Region in Tanzania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 148-165, January.
    9. Elghali, Lucia & Clift, Roland & Sinclair, Philip & Panoutsou, Calliope & Bauen, Ausilio, 2007. "Developing a sustainability framework for the assessment of bioenergy systems," Energy Policy, Elsevier, vol. 35(12), pages 6075-6083, December.
    10. Achten, Wouter M.J. & Almeida, Joana & Fobelets, Vincent & Bolle, Evelien & Mathijs, Erik & Singh, Virendra P. & Tewari, Dina N. & Verchot, Louis V. & Muys, Bart, 2010. "Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India," Applied Energy, Elsevier, vol. 87(12), pages 3652-3660, December.
    11. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    12. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    13. Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
    14. van Dam, J. & Junginger, M. & Faaij, A.P.C., 2010. "From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2445-2472, December.
    15. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    16. Pezzey, J., 1992. "Sustainable Development Concepts; An Economic Analysis," Papers 2, World Bank - The World Bank Environment Paper.
    17. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    18. Finnveden, Göran & Östlund, Per, 1997. "Exergies of natural resources in life-cycle assessment and other applications," Energy, Elsevier, vol. 22(9), pages 923-931.
    19. Joachim H. Spangenberg, 2004. "Reconciling sustainability and growth: criteria, indicators, policies," Sustainable Development, John Wiley & Sons, Ltd., vol. 12(2), pages 74-86.
    20. Delattin, F. & De Ruyck, J. & Bram, S., 2009. "Detailed study of the impact of co-utilization of biomass in a natural gas combined cycle power plant through perturbation analysis," Applied Energy, Elsevier, vol. 86(5), pages 622-629, May.
    21. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    2. Inge Stupak & Jamie Joudrey & C. Tattersall Smith & Luc Pelkmans & Helena Chum & Annette Cowie & Oskar Englund & Chun Sheng Goh & Martin Junginger, 2016. "A global survey of stakeholder views and experiences for systems needed to effectively and efficiently govern sustainability of bioenergy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 89-118, January.
    3. repec:gam:jsusta:v:10:y:2018:i:2:p:320-:d:128892 is not listed on IDEAS
    4. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    5. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    6. Kurka, Thomas & Blackwood, David, 2013. "Participatory selection of sustainability criteria and indicators for bioenergy developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 92-102.
    7. Peter, Christiane & Helming, Katharina & Nendel, Claas, 2017. "Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 461-476.
    8. Moreira, João M.L. & Cesaretti, Marcos A. & Carajilescov, Pedro & Maiorino, José R., 2015. "Sustainability deterioration of electricity generation in Brazil," Energy Policy, Elsevier, vol. 87(C), pages 334-346.
    9. Lähtinen, Katja & Myllyviita, Tanja & Leskinen, Pekka & Pitkänen, Sari K., 2014. "A systematic literature review on indicators to assess local sustainability of forest energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1202-1216.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    11. Zuo, Jian & Zillante, George & Wilson, Lou & Davidson, Kathryn & Pullen, Stephen, 2012. "Sustainability policy of construction contractors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3910-3916.
    12. Oskar Englund & Göran Berndes, 2015. "How do sustainability standards consider biodiversity?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 26-50, January.
    13. Petrillo, Antonella & De Felice, Fabio & Jannelli, Elio & Autorino, Claudio & Minutillo, Mariagiovanna & Lavadera, Antonio Lubrano, 2016. "Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system," Renewable Energy, Elsevier, vol. 95(C), pages 337-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3918-3933. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.