IDEAS home Printed from
   My bibliography  Save this article

The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems


  • L. Hay
  • A. H. B. Duffy
  • R. I. Whitfield


In this paper, we present the first generic framework for selecting comprehensive material/energetic sustainability performance indicators (SPIs) for technical systems: the S‐Cycle Performance Matrix (S‐CPMatrix). This novel matrix is comprised of 6 generic sustainability goals, 11 SPI archetypes, and 23 corresponding metrics identified from our previously developed model of technical system sustainability (the S‐Cycle), and is intended to support decision makers in meeting three identified criteria for comprehensive SPI sets: (C1) inclusion of indicators measuring performance at all relevant scales; (C2) inclusion of efficiency and effectiveness indicators; and (C3) coverage of all system sustainability goals. We evaluated the matrix by interpreting and classifying 324 indicators currently applied to assess technical system sustainability performance in the literature, with 94.1% found to be fully classifiable with respect to the proposed goals and SPI archetypes following several refinements. The matrix is applicable to different systems, and may be considered to facilitate the selection of a holistic set of SPIs from different sources and evaluation approaches. Thus, it addresses a need for consistent yet flexible guidance on how to comprehensively assess technical system sustainability performance, mirroring generic guidelines on organizational SPI selection widely available through several international initiatives. In addition to industrial evaluation of the S‐CPMatrix, four avenues for future research are proposed: (i) use of the matrix for systems comparison/benchmarking; (ii) further investigation of unsupported metrics; (iii) the nature and measurement of contaminants; and (iv) assessing the comprehensiveness of current SPI sets for technical systems.

Suggested Citation

  • L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
  • Handle: RePEc:wly:syseng:v:20:y:2017:i:1:p:45-70
    DOI: 10.1002/sys.21378

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    References listed on IDEAS

    1. J. Emil Morhardt & Sarah Baird & Kelly Freeman, 2002. "Scoring corporate environmental and sustainability reports using GRI 2000, ISO 14031 and other criteria," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 9(4), pages 215-233, December.
    2. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    3. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    4. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    5. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
    6. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    7. Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Peretto, Antonio, 2014. "Application of environmental performance assessment of CHP systems with local and global approaches," Applied Energy, Elsevier, vol. 130(C), pages 774-782.
    8. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    9. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    10. Söğüt, Z. & Oktay, Z. & Karakoc, H. & Hepbasli, A., 2012. "Investigation of environmental and exergetic performance for coal-preparation units in cement production processes," Energy, Elsevier, vol. 46(1), pages 72-77.
    11. Buonocore, Elvira & Franzese, Pier Paolo & Ulgiati, Sergio, 2012. "Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective," Energy, Elsevier, vol. 37(1), pages 69-78.
    12. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    13. van Zeijl-Rozema, Annemarie & Ferraguto, Ludovico & Caratti, Pietro, 2011. "Comparing region-specific sustainability assessments through indicator systems: Feasible or not?," Ecological Economics, Elsevier, vol. 70(3), pages 475-486, January.
    14. Ulgiati, S. & Ascione, M. & Bargigli, S. & Cherubini, F. & Franzese, P.P. & Raugei, M. & Viglia, S. & Zucaro, A., 2011. "Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective," Ecological Modelling, Elsevier, vol. 222(1), pages 176-189.
    15. Shahabi, Maedeh P. & McHugh, Adam & Anda, Martin & Ho, Goen, 2014. "Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy," Renewable Energy, Elsevier, vol. 67(C), pages 53-58.
    16. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    17. Gürzenich, D. & Wagner, H.-J., 2004. "Cumulative energy demand and cumulative emissions of photovoltaics production in Europe," Energy, Elsevier, vol. 29(12), pages 2297-2303.
    18. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    19. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    20. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luthra, Sunil & Mangla, Sachin Kumar & Kharb, Ravinder K., 2015. "Sustainable assessment in energy planning and management in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 58-73.
    2. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    3. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    4. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    5. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    6. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Kumar, Deepak & Katoch, S.S., 2014. "Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 101-108.
    8. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    9. Hemmati, S. & Ghaderi, S.F. & Ghazizadeh, M.S., 2018. "Sustainable energy hub design under uncertainty using Benders decomposition method," Energy, Elsevier, vol. 143(C), pages 1029-1047.
    10. Akber, Muhammad Zeshan & Thaheem, Muhammad Jamaluddin & Arshad, Husnain, 2017. "Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix," Energy Policy, Elsevier, vol. 111(C), pages 111-126.
    11. Janmontree, Jettarat & Zadek, Hartmut, 2020. "Development of sustainability performance measurement framework for measuring complex sustainability impacts in the manufacturing industry," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 3-31, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    12. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    13. Hottenroth, H. & Sutardhio, C. & Weidlich, A. & Tietze, I. & Simon, S. & Hauser, W. & Naegler, T. & Becker, L. & Buchgeister, J. & Junne, T. & Lehr, U. & Scheel, O. & Schmidt-Scheele, R. & Ulrich, P. , 2022. "Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    15. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    16. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    17. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    18. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    19. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    20. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:20:y:2017:i:1:p:45-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.