IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v49y2009i3p971-1000.html
   My bibliography  Save this article

A methodology for the choice of the best fitting continuous-time stochastic models of crude oil price

Author

Listed:
  • Kaffel, Bilel
  • Abid, Fathi

Abstract

The crude oil price is generally considered as the fundamental factor in the valuation of undeveloped reserves but it is not the unique one. Undeveloped field value also depends on the uncertainty relating to the convenience yield and the risk-free interest rate. The purpose of this paper is to decide on the best continuous-time stochastic models for these risk factors. The Generalized Method of Moments and the Maximum Likelihood Estimation are implemented to fit the parameters of continuous-time stochastic processes. The results of unit root tests without breaks reveal a mean reversion in convenience yield series. Multiple structural change tests show that the risk-free interest rate can be considered constant. The simulation of continuous-time stochastic processes and the mean error between the simulated prices and the market ones show that the Geometric Brownian Motion with jumps is the best model for the oil price compared to the other commonly used processes.

Suggested Citation

  • Kaffel, Bilel & Abid, Fathi, 2009. "A methodology for the choice of the best fitting continuous-time stochastic models of crude oil price," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 971-1000, August.
  • Handle: RePEc:eee:quaeco:v:49:y:2009:i:3:p:971-1000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062-9769(08)00077-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    3. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    4. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    5. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    6. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    7. Yacine Aït-Sahalia, 1999. "Transition Densities for Interest Rate and Other Nonlinear Diffusions," Journal of Finance, American Finance Association, vol. 54(4), pages 1361-1395, August.
    8. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    11. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    12. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    13. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    16. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    17. Malcolm P. Baker & E. Scott Mayfield & John E. Parsons, 1998. "Alternative Models of Uncertain Commodity Prices for Use with Modern Asset Pricing Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 115-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamidreza Mostafaei & Ali Akbar Rahimzadeh Sani & Samira Askari, 2013. "A Methodology for the Choice of the Best Fitting Continuous-Time Stochastic Models of Crude Oil Price: The Case of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 3(2), pages 137-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:49:y:2009:i:3:p:971-1000. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.