IDEAS home Printed from
   My bibliography  Save this article

A Methodology for the Choice of the Best Fitting Continuous-Time Stochastic Models of Crude Oil Price: The Case of Russia


  • Hamidreza Mostafaei

    (Department of Statistics, Tehran North Branch, Islamic Azad University, Tehran, Iran)

  • Ali Akbar Rahimzadeh Sani

    (Department of Mathematics, Teacher Training University of Tehran, IRAN)

  • Samira Askari

    (M.Sc Statistics, Tehran North Branch, Islamic Azad University)


In this study, it has been attempted to select the best continuous- time stochastic model, in order to describe and forecast the oil price of Russia, by information and statistics about oil price that has been available for oil price in the past. For this purpose, method of The Maximum Likelihood Estimation is implemented for estimation of the parameters of continuous-time stochastic processes. The result of unit root test with a structural break, reveals that time series of the crude oil price is a stationary series. The simulation of continuous-time stochastic processes and the mean square error between the simulated prices and the market ones shows that the Geometric Brownian Motion is the best model for the Russian crude oil price.

Suggested Citation

  • Hamidreza Mostafaei & Ali Akbar Rahimzadeh Sani & Samira Askari, 2013. "A Methodology for the Choice of the Best Fitting Continuous-Time Stochastic Models of Crude Oil Price: The Case of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 3(2), pages 137-142.
  • Handle: RePEc:eco:journ2:2013-02-3

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    2. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    3. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    4. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    5. Kaffel, Bilel & Abid, Fathi, 2009. "A methodology for the choice of the best fitting continuous-time stochastic models of crude oil price," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 971-1000, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chen, Ruoran & Deng, Tianhu & Huang, Simin & Qin, Ruwen, 2015. "Optimal crude oil procurement under fluctuating price in an oil refinery," European Journal of Operational Research, Elsevier, vol. 245(2), pages 438-445.

    More about this item


    Stochastic processes; Crude oil price; Unit root test; Structural break; MLE estimation; Simulation;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2013-02-3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ilhan Ozturk). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.