IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v524y2019icp221-234.html
   My bibliography  Save this article

Size distribution of cities: A kinetic explanation

Author

Listed:
  • Gualandi, Stefano
  • Toscani, Giuseppe

Abstract

We present a kinetic approach to the formation of urban agglomerations which is based on simple rules of immigration and emigration. In most cases, the Boltzmann-type kinetic description allows to obtain, within an asymptotic procedure, a Fokker–Planck equation with variable coefficients of diffusion and drift, which describes the evolution in time of some probability density of the city size. It is shown that, in dependence of the microscopic rules of migration, the equilibrium density can follow both a power law for large values of the size variable, which contains as particular case a Zipf’s law behavior, and a lognormal law for middle and low values of the size variable. In particular, connections between the value of Pareto index of the power law at equilibrium and the disposal of the population to emigration are outlined. The theoretical findings are tested with recent data of the populations of Italy and Switzerland.

Suggested Citation

  • Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
  • Handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:221-234
    DOI: 10.1016/j.physa.2019.04.260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930634X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    2. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    3. Federico Bassetti & Giuseppe Toscani, 2010. "Explicit equilibria in a kinetic model of gambling," Papers 1002.3689, arXiv.org.
    4. Abhijit Kar Gupta, 2006. "Models of wealth distributions: a perspective," Papers physics/0604161, arXiv.org, revised May 2006.
    5. Devadoss, Stephen & Luckstead, Jeff & Danforth, Diana & Akhundjanov, Sherzod, 2016. "The power law distribution for lower tail cities in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 193-196.
    6. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    7. Hernán D. Rozenfeld & Diego Rybski & Xavier Gabaix & Hernán A. Makse, 2011. "The Area and Population of Cities: New Insights from a Different Perspective on Cities," American Economic Review, American Economic Association, vol. 101(5), pages 2205-2225, August.
    8. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    9. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    10. Galam, Serge & Zucker, Jean-Daniel, 2000. "From individual choice to group decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 644-659.
    11. Luckstead, Jeff & Devadoss, Stephen, 2017. "Pareto tails and lognormal body of US cities size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 573-578.
    12. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    13. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    14. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    15. repec:hrv:faseco:34651705 is not listed on IDEAS
    16. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    17. Giesen, Kristian & Zimmermann, Arndt & Suedekum, Jens, 2010. "The size distribution across all cities - Double Pareto lognormal strikes," Journal of Urban Economics, Elsevier, vol. 68(2), pages 129-137, September.
    18. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    19. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "Kinetic equations modelling wealth redistribution: A comparison of approaches," CoFE Discussion Papers 08/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    20. Asim Ghosh & Arnab Chatterjee & Anindya S. Chakrabarti & Bikas K Chakrabarti, 2014. "Zipf's law in city size from a resource utilization model," Papers 1403.1822, arXiv.org, revised Oct 2014.
    21. Moshe Levy, 2009. "Gibrat's Law for (All) Cities: Comment," American Economic Review, American Economic Association, vol. 99(4), pages 1672-1675, September.
    22. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    23. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 739-767.
    24. Beaudry, Paul & Green, David A. & Sand, Benjamin M., 2014. "Spatial equilibrium with unemployment and wage bargaining: Theory and estimation," Journal of Urban Economics, Elsevier, vol. 79(C), pages 2-19.
    25. Arnab Chatterjee & Bikas K. Chakrabarti & Robin B. Stinchcombe, 2005. "Master equation for a kinetic model of trading market and its analytic solution," Papers cond-mat/0501413, arXiv.org, revised Aug 2005.
    26. Düring, Bertram & Toscani, Giuseppe, 2008. "International and domestic trading and wealth distribution," CoFE Discussion Papers 08/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
    27. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    28. Boudin, Laurent & Mercier, Aurore & Salvarani, Francesco, 2012. "Conciliatory and contradictory dynamics in opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5672-5684.
    29. Luckstead, Jeff & Devadoss, Stephen, 2014. "A comparison of city size distributions for China and India from 1950 to 2010," Economics Letters, Elsevier, vol. 124(2), pages 290-295.
    30. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    31. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    32. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    33. Anindya S. Chakrabarti, 2017. "Scale-free distribution as an economic invariant: a theoretical approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 1-26, April.
    34. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    35. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    36. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 12, pages 1-17.
    37. Jan Eeckhout, 2009. "Gibrat's Law for (All) Cities: Reply," American Economic Review, American Economic Association, vol. 99(4), pages 1676-1683, September.
    38. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    39. Chakrabarti, Anindya S., 2012. "Effects of the turnover rate on the size distribution of firms: An application of the kinetic exchange models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6039-6050.
    40. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    41. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 267-276, March.
    42. Ben-Naim, E & Krapivsky, P.L & Vazquez, F & Redner, S, 2003. "Unity and discord in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 99-106.
    43. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    44. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    45. Arturo Ramos, 2017. "Are the log-growth rates of city sizes distributed normally? Empirical evidence for the USA," Empirical Economics, Springer, vol. 53(3), pages 1109-1123, November.
    46. Gangopadhyay, Kausik & Basu, B., 2009. "City size distributions for India and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2682-2688.
    47. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2013. "The size distribution of US cities: Not Pareto, even in the tail," Economics Letters, Elsevier, vol. 120(2), pages 232-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campolieti, Michele & Ramos, Arturo, 2021. "The distribution of strike size: Empirical evidence from Europe and North America in the 19th and 20th centuries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturo, Ramos, 2019. "Have the log-population processes stationary and independent increments? Empirical evidence for Italy, Spain and the USA along more than a century," MPRA Paper 93562, University Library of Munich, Germany.
    2. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    3. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    4. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    5. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal, Kiel Institute for the World Economy (IfW), vol. 12, pages 1-17.
    6. Rafael González-Val, 2019. "US city-size distribution and space," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(3), pages 283-300, July.
    7. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    8. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    9. G. Toscani & C. Brugna & S. Demichelis, 2012. "Kinetic models for the trading of goods," Papers 1208.6305, arXiv.org.
    10. Ramos, Arturo, 2015. "Log-growth distributions of US city sizes and non-Lévy processes," MPRA Paper 66561, University Library of Munich, Germany.
    11. Kristian Giesen & Jens Suedekum, 2012. "The Size Distribution Across All 'Cities': A Unifying Approach," SERC Discussion Papers 0122, Spatial Economics Research Centre, LSE.
    12. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    13. Giesen, Kristian & Suedekum, Jens, 2014. "City age and city size," European Economic Review, Elsevier, vol. 71(C), pages 193-208.
    14. Gualandi, Stefano & Toscani, Giuseppe, 2017. "Pareto tails in socio-economic phenomena: A kinetic description," Economics Discussion Papers 2017-111, Kiel Institute for the World Economy (IfW).
    15. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    16. Anindya S. Chakrabarti, 2017. "Scale-free distribution as an economic invariant: a theoretical approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 1-26, April.
    17. Devadoss, Stephen & Luckstead, Jeff, 2016. "Size distribution of U.S. lower tail cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 158-162.
    18. Dewitte, Ruben & Dumont, Michel & Rayp, Glenn & Willemé, Peter, 2020. "Unobserved Heterogeneity in the Productivity Distribution and Gains From Trade," MPRA Paper 102711, University Library of Munich, Germany.
    19. Toscani, Giuseppe, 2016. "Kinetic and mean field description of Gibrat’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 802-811.
    20. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:221-234. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.