IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/93562.html
   My bibliography  Save this paper

Have the log-population processes stationary and independent increments? Empirical evidence for Italy, Spain and the USA along more than a century

Author

Listed:
  • Arturo, Ramos

Abstract

We review the classical Gibrat’s process for the population of city sizes. In particular, we are interested in whether the log-population process has stationary and independent (Gibrat’s Law for cities) increments. We have tested these characteristics for the case of the municipalities of Italy and Spain and the places of USA for a time span of more than one century. The results are clear: stationarity and independence are empirically rejected by standard tests. These results open theoretically the way for the observance of other city size distributions other than the lognormal and the double Pareto lognormal, something that in fact has already happened in the literature.

Suggested Citation

  • Arturo, Ramos, 2019. "Have the log-population processes stationary and independent increments? Empirical evidence for Italy, Spain and the USA along more than a century," MPRA Paper 93562, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:93562
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/93562/1/MPRA_paper_93562.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/93749/1/MPRA_paper_93562.pdf
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    2. Giesen, Kristian & Suedekum, Jens, 2014. "City age and city size," European Economic Review, Elsevier, vol. 71(C), pages 193-208.
    3. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    4. Kristian GIESEN & Jens SÜDEKUM, 2012. "The French Overall City Size Distribution," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 36, pages 107-126.
    5. Hernán D. Rozenfeld & Diego Rybski & Xavier Gabaix & Hernán A. Makse, 2011. "The Area and Population of Cities: New Insights from a Different Perspective on Cities," American Economic Review, American Economic Association, vol. 101(5), pages 2205-2225, August.
    6. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    7. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    8. Luckstead, Jeff & Devadoss, Stephen, 2017. "Pareto tails and lognormal body of US cities size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 573-578.
    9. Reed, William J., 2003. "The Pareto law of incomes—an explanation and an extension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 469-486.
    10. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    11. Giesen, Kristian & Zimmermann, Arndt & Suedekum, Jens, 2010. "The size distribution across all cities - Double Pareto lognormal strikes," Journal of Urban Economics, Elsevier, vol. 68(2), pages 129-137, September.
    12. Moshe Levy, 2009. "Gibrat's Law for (All) Cities: Comment," American Economic Review, American Economic Association, vol. 99(4), pages 1672-1675, September.
    13. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 739-767.
    14. William J. Reed, 2002. "On the Rank‐Size Distribution for Human Settlements," Journal of Regional Science, Wiley Blackwell, vol. 42(1), pages 1-17, February.
    15. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    16. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    17. Rafael González-Val & Luis Lanaspa & Fernando Sanz-Gracia, 2014. "New Evidence on Gibrat’s Law for Cities," Urban Studies, Urban Studies Journal Limited, vol. 51(1), pages 93-115, January.
    18. L. A. N. Amaral & S. V. Buldyrev & S. Havlin & H. Leschhorn & P. Maass & M. A. Salinger & H. E. Stanley & M. H. R. Stanley, 1997. "Scaling behavior in economics: I. Empirical results for company growth," Papers cond-mat/9702082, arXiv.org.
    19. González-Val, Rafael & Lanaspa, Luis & Sanz-Gracia, Fernando, 2013. "Gibrat’s law for cities, growth regressions and sample size," Economics Letters, Elsevier, vol. 118(2), pages 367-369.
    20. Jan Eeckhout, 2009. "Gibrat's Law for (All) Cities: Reply," American Economic Review, American Economic Association, vol. 99(4), pages 1676-1683, September.
    21. Toda, Alexis Akira, 2012. "The double power law in income distribution: Explanations and evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 84(1), pages 364-381.
    22. Gatti, Domenico Delli & Guilmi, Corrado Di & Gaffeo, Edoardo & Giulioni, Gianfranco & Gallegati, Mauro & Palestrini, Antonio, 2005. "A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 489-512, April.
    23. Arturo Ramos, 2017. "Are the log-growth rates of city sizes distributed normally? Empirical evidence for the USA," Empirical Economics, Springer, vol. 53(3), pages 1109-1123, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Arturo, 2015. "Log-growth distributions of US city sizes and non-Lévy processes," MPRA Paper 66561, University Library of Munich, Germany.
    2. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    3. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    4. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    5. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    6. Rafael González-Val, 2019. "US city-size distribution and space," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(3), pages 283-300, July.
    7. Kristian Giesen & Jens Suedekum, 2012. "The Size Distribution Across All 'Cities': A Unifying Approach," SERC Discussion Papers 0122, Spatial Economics Research Centre, LSE.
    8. Giesen, Kristian & Suedekum, Jens, 2014. "City age and city size," European Economic Review, Elsevier, vol. 71(C), pages 193-208.
    9. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    10. Arturo Ramos, 2017. "Are the log-growth rates of city sizes distributed normally? Empirical evidence for the USA," Empirical Economics, Springer, vol. 53(3), pages 1109-1123, November.
    11. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    13. Ramos, Arturo, 2015. "Are the log-growth rates of city sizes normally distributed? Empirical evidence for the US," MPRA Paper 65584, University Library of Munich, Germany.
    14. Rafael González‐Val, 2019. "Historical urban growth in Europe (1300–1800)," Papers in Regional Science, Wiley Blackwell, vol. 98(2), pages 1115-1136, April.
    15. Akhundjanov, Sherzod B. & Devadoss, Stephen & Luckstead, Jeff, 2017. "Size distribution of national CO2 emissions," Energy Economics, Elsevier, vol. 66(C), pages 182-193.
    16. González-Val, Rafael, 2020. "The Spanish spatial city size distribution," MPRA Paper 101195, University Library of Munich, Germany.
    17. Dewitte, Ruben & Dumont, Michel & Rayp, Glenn & Willemé, Peter, 2020. "Unobserved Heterogeneity in the Productivity Distribution and Gains From Trade," MPRA Paper 102711, University Library of Munich, Germany.
    18. Beare, Brendan K & Toda, Alexis Akira, 2020. "On the emergence of a power law in the distribution of COVID-19 cases," University of California at San Diego, Economics Working Paper Series qt9k5027d0, Department of Economics, UC San Diego.
    19. Sherzod B. Akhundjanov & Alexis Akira Toda, 0. "Is Gibrat’s “Economic Inequality” lognormal?," Empirical Economics, Springer, vol. 0, pages 1-21.
    20. Marco Bee, 2020. "On discriminating between lognormal and Pareto tail: A mixture-based approach," DEM Working Papers 2020/9, Department of Economics and Management.

    More about this item

    Keywords

    Gibrat’s process; log-population process; stationary increments; independent increments; Italian cities; Spanish cities; USA cities;

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:93562. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.