IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v478y2017icp11-19.html
   My bibliography  Save this article

Entropy measure of credit risk in highly correlated markets

Author

Listed:
  • Gottschalk, Sylvia

Abstract

We compare the single and multi-factor structural models of corporate default by calculating the Jeffreys–Kullback–Leibler divergence between their predicted default probabilities when asset correlations are either high or low. Single-factor structural models assume that the stochastic process driving the value of a firm is independent of that of other companies. A multi-factor structural model, on the contrary, is built on the assumption that a single firm’s value follows a stochastic process correlated with that of other companies. Our main results show that the divergence between the two models increases in highly correlated, volatile, and large markets, but that it is closer to zero in small markets, when asset correlations are low and firms are highly leveraged. These findings suggest that during periods of financial instability, when asset volatility and correlations increase, one of the models misreports actual default risk.

Suggested Citation

  • Gottschalk, Sylvia, 2017. "Entropy measure of credit risk in highly correlated markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 11-19.
  • Handle: RePEc:eee:phsmap:v:478:y:2017:i:c:p:11-19
    DOI: 10.1016/j.physa.2017.02.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117302170
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morana, Claudio & Beltratti, Andrea, 2008. "Comovements in international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(1), pages 31-45, February.
    2. Pollet, Joshua M. & Wilson, Mungo, 2010. "Average correlation and stock market returns," Journal of Financial Economics, Elsevier, vol. 96(3), pages 364-380, June.
    3. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    4. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    5. Nathaniel Frank, 2009. "Linkages between asset classes during the financial crisis, accounting for market microstructure noise and non-synchronous trading," Economics Papers 2009-W04, Economics Group, Nuffield College, University of Oxford.
    6. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    7. Chunxia, Yang & Xueshuai, Zhu & Luoluo, Jiang & Sen, Hu & He, Li, 2016. "Study on the contagion among American industries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 601-612.
    8. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    9. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    10. Burbea, Jacob & Rao, C. Radhakrishna, 1982. "Entropy differential metric, distance and divergence measures in probability spaces: A unified approach," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 575-596, December.
    11. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    12. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    13. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    14. Zhou, Chunsheng, 2001. "An Analysis of Default Correlations and Multiple Defaults," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 555-576.
    15. Lopez, Jose A., 2004. "The empirical relationship between average asset correlation, firm probability of default, and asset size," Journal of Financial Intermediation, Elsevier, vol. 13(2), pages 265-283, April.
    16. Cassio Neri & Lorenz Schneider, 2012. "Maximum entropy distributions inferred from option portfolios on an asset," Finance and Stochastics, Springer, vol. 16(2), pages 293-318, April.
    17. Susanne Emmer & Dirk Tasche, 2003. "Calculating credit risk capital charges with the one-factor model," Papers cond-mat/0302402, arXiv.org, revised Jan 2005.
    18. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    19. Zellner, Arnold, 2002. "Information processing and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 41-50, March.
    20. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    21. Lisa Borland & Jeremy Evnine & Benoit Pochart, 2005. "A Merton-Like Approach to Pricing Debt based on a non-Gaussian Asset Model," Papers cond-mat/0501395, arXiv.org.
    22. Joe, Harry, 2006. "Generating random correlation matrices based on partial correlations," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2177-2189, November.
    23. Krishnan, C.N.V. & Petkova, Ralitsa & Ritchken, Peter, 2009. "Correlation risk," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 353-367, June.
    24. Les Gulko, 2002. "The Entropy Theory Of Bond Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 355-383.
    25. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    26. Les Gulko, 1999. "The Entropy Theory Of Stock Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 331-355.
    27. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    28. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    29. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    30. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    31. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    32. Nicole Branger, 2004. "Pricing Derivative Securities Using Cross-Entropy: An Economic Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 63-81.
    33. Rangvid, Jesper, 2001. "Increasing convergence among European stock markets?: A recursive common stochastic trends analysis," Economics Letters, Elsevier, vol. 71(3), pages 383-389, June.
    34. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvia Gottschalk, 2016. "Entropy and credit risk in highly correlated markets," Papers 1604.07042, arXiv.org.
    2. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    3. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    4. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    5. Lee, Yongwoong & Rösch, Daniel & Scheule, Harald, 2021. "Systematic credit risk in securitised mortgage portfolios," Journal of Banking & Finance, Elsevier, vol. 122(C).
    6. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    8. Wan†Chien Chiu & Juan Ignacio Peña & Chih†Wei Wang, 2015. "Measuring Systemic Risk: Common Factor Exposures and Tail Dependence Effects," European Financial Management, European Financial Management Association, vol. 21(5), pages 833-866, November.
    9. Malhotra, Gifty & Srivastava, R. & Taneja, H.C., 2019. "Calibration of the risk-neutral density function by maximization of a two-parameter entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 45-54.
    10. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Papers 1106.0039, arXiv.org.
    11. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    12. Duellmann, Klaus & Küll, Jonathan & Kunisch, Michael, 2010. "Estimating asset correlations from stock prices or default rates--Which method is superior?," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2341-2357, November.
    13. Politi, Mauro & Millot, Nicolas & Chakraborti, Anirban, 2012. "The near-extreme density of intraday log-returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 147-155.
    14. Hanson, Samuel G. & Pesaran, M. Hashem & Schuermann, Til, 2008. "Firm heterogeneity and credit risk diversification," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 583-612, September.
    15. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Post-Print hal-00827942, HAL.
    16. Wolff, Christian & Bams, Dennis & Pisa, Magdalena, 2012. "Modeling default correlation in a US retail loan portfolio," CEPR Discussion Papers 9205, C.E.P.R. Discussion Papers.
    17. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.
    18. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    19. Mager, Ferdinand & Schmieder, Christian, 2008. "Stress testing of real credit portfolios," Discussion Paper Series 2: Banking and Financial Studies 2008,17, Deutsche Bundesbank.
    20. Nikola A. Tarashev & Haibin Zhu, 2007. "Modelling and calibration errors in measures of portfolio credit risk," BIS Working Papers 230, Bank for International Settlements.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:478:y:2017:i:c:p:11-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.