IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.04385.html
   My bibliography  Save this paper

Topological Data Analysis of Financial Time Series: Landscapes of Crashes

Author

Listed:
  • Marian Gidea
  • Yuri Katz

Abstract

We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their $L^p$-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the $L^p$-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of $L^p$-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which goes beyond the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.

Suggested Citation

  • Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
  • Handle: RePEc:arx:papers:1703.04385
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.04385
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    2. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    3. Miśkiewicz, J. & Ausloos, M., 2004. "A logistic map approach to economic cycles. (I). The best adapted companies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 206-214.
    4. Youngna Choi & Raphael Douady, 2012. "Financial crisis dynamics: attempt to define a market instability indicator," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1351-1365, August.
    5. T. S. Biro & R. Rosenfeld, 2007. "Microscopic Origin of Non-Gaussian Distributions of Financial Returns," Papers 0705.4112, arXiv.org, revised Jul 2007.
    6. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    7. Austin Gerig & Javier Vicente & Miguel A. Fuentes, 2009. "Model for Non-Gaussian Intraday Stock Returns," Papers 0906.3841, arXiv.org, revised Dec 2009.
    8. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. Katz, Yuri A. & Tian, Li, 2013. "q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4989-4996.
    11. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    12. Erik Van der Straeten & Christian Beck, 2009. "Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence," Papers 0901.2271, arXiv.org, revised Sep 2009.
    13. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    14. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    15. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Rivera-Castro & Polina Pilyugina & Evgeny Burnaev, 2020. "Topological Data Analysis for Portfolio Management of Cryptocurrencies," Papers 2009.03362, arXiv.org.
    2. Carlsson, John G, 2024. "Applying Topological Data Analysis to Logistics Systems Analysis," Institute of Transportation Studies, Working Paper Series qt7m0347nd, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    3. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    5. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Papers 1106.0039, arXiv.org.
    6. Politi, Mauro & Millot, Nicolas & Chakraborti, Anirban, 2012. "The near-extreme density of intraday log-returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 147-155.
    7. Gottschalk, Sylvia, 2017. "Entropy measure of credit risk in highly correlated markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 11-19.
    8. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Post-Print hal-00827942, HAL.
    9. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    10. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    11. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    12. Gangadhar Nayak & Amit Kumar Singh & Dilip Senapati, 2021. "Computational Modeling of Non-Gaussian Option Price Using Non-extensive Tsallis’ Entropy Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1353-1371, April.
    13. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    14. Sandhya Devi, 2021. "Asymmetric Tsallis distributions for modelling financial market dynamics," Papers 2102.04532, arXiv.org.
    15. S. M. Duarte Queiros, 2005. "On non-Gaussianity and dependence in financial time series: a nonextensive approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 475-487.
    16. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    17. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Kozaki, M. & Sato, A.-H., 2008. "Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1225-1246.
    19. Sandhya Devi & Sherman Page, 2022. "Tsallis Relative entropy from asymmetric distributions as a risk measure for financial portfolios," Papers 2205.13625, arXiv.org.
    20. Ahmad Hajihasani & Ali Namaki & Nazanin Asadi & Reza Tehrani, 2020. "Non-Extensive Value-at-Risk Estimation During Times of Crisis," Papers 2005.09036, arXiv.org, revised Jan 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.04385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.