IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i8p1631-1658.html
   My bibliography  Save this article

An exploration of commonly observed stylized facts with data from experimental asset markets

Author

Listed:
  • Kirchler, Michael
  • Huber, Jürgen

Abstract

We analyze data from experimental asset markets with pooled linear regression models to shed some light on the emergence of fat tails and volatility clustering in return distributions. Our data suggest that the arrival of new information is the most important cause for both stylized facts. After new information arrives we see spikes in volatility as this information is digested in the market. We also find that uninformed traders contribute significantly more to fat tails than do informed traders and that the heterogeneity in fundamental information leads to larger returns.

Suggested Citation

  • Kirchler, Michael & Huber, Jürgen, 2009. "An exploration of commonly observed stylized facts with data from experimental asset markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1631-1658.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1631-1658
    DOI: 10.1016/j.physa.2008.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108010364
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    2. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    3. Plott, Charles R & Sunder, Shyam, 1982. "Efficiency of Experimental Security Markets with Insider Information: An Application of Rational-Expectations Models," Journal of Political Economy, University of Chicago Press, vol. 90(4), pages 663-698, August.
    4. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    5. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    6. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    7. Huber, Jurgen & Kirchler, Michael & Sutter, Matthias, 2008. "Is more information always better: Experimental financial markets with cumulative information," Journal of Economic Behavior & Organization, Elsevier, vol. 65(1), pages 86-104, January.
    8. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    9. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    10. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    11. B. Tóth & E. Scalas & J. Huber & M. Kirchler, 2007. "The value of information in a multi-agent market model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(1), pages 115-120, January.
    12. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    13. Marco Licalzi & Paolo Pellizzari, 2003. "Fundamentalists clashing over the book: a study of order-driven stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 470-480.
    14. Youssefmir, Michael & Huberman, Bernardo A., 1997. "Clustered volatility in multiagent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 32(1), pages 101-118, January.
    15. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
    18. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    19. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    20. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    21. Shyam Sunder, 2007. "What Have We Learned From Experimental Finance?," Lecture Notes in Economics and Mathematical Systems, in: Sobei Hidenori Oda (ed.), Developments on Experimental Economics, pages 91-100, Springer.
    22. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    23. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    24. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    25. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    26. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    27. G. Spada & J. Farmer & F. Lillo, 2008. "The non-random walk of stock prices: the long-term correlation between signs and sizes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 64(3), pages 607-614, August.
    28. Huber, Jurgen, 2007. "`J'-shaped returns to timing advantage in access to information - Experimental evidence and a tentative explanation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2536-2572, August.
    29. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    30. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmen, Martin & Kirchler, Michael & Kleinlercher, Daniel, 2014. "Do option-like incentives induce overvaluation? Evidence from experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 179-194.
    2. Huber, Jürgen & Kleinlercher, Daniel & Kirchler, Michael, 2012. "The impact of a financial transaction tax on stylized facts of price returns—Evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1248-1266.
    3. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    4. repec:grz:wpsses:2021-04 is not listed on IDEAS
    5. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    6. Hernández, Juan Antonio & Benito, Rosa Marı´a & Losada, Juan Carlos, 2012. "An adaptive stochastic model for financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 899-908.
    7. Merl, Robert, 2022. "Literature review of experimental asset markets with insiders," Journal of Behavioral and Experimental Finance, Elsevier, vol. 33(C).
    8. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    2. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    4. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    5. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Kirchler, Michael, 2009. "Underreaction to fundamental information and asymmetry in mispricing between bullish and bearish markets. An experimental study," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 491-506, February.
    8. Huber, Jurgen, 2007. "`J'-shaped returns to timing advantage in access to information - Experimental evidence and a tentative explanation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2536-2572, August.
    9. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    11. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    13. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    14. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    15. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    16. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    17. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    18. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    19. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    20. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1631-1658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.