IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0610026.html

The value of information in a multi-agent market model

Author

Listed:
  • Bence Toth
  • Enrico Scalas
  • Juergen Huber
  • Michael Kirchler

Abstract

We present an experimental and simulated model of a multi-agent stock market driven by a double auction order matching mechanism. Studying the effect of cumulative information on the performance of traders, we find a non monotonic relationship of net returns of traders as a function of information levels, both in the experiments and in the simulations. Particularly, averagely informed traders perform worse than the non informed and only traders with high levels of information (insiders) are able to beat the market. The simulations and the experiments reproduce many stylized facts of stock markets, such as fast decay of autocorrelation of returns, volatility clustering and fat-tailed distribution of returns. These results have an important message for everyday life. They can give a possible explanation why, on average, professional fund managers perform worse than the market index.

Suggested Citation

  • Bence Toth & Enrico Scalas & Juergen Huber & Michael Kirchler, 2006. "The value of information in a multi-agent market model," Papers physics/0610026, arXiv.org, revised Feb 2007.
  • Handle: RePEc:arx:papers:physics/0610026
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0610026
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacobovic, Royi & Levy, Yehuda John & Solan, Eilon, 2026. "Bayesian games with nested information," Theoretical Economics, Econometric Society, vol. 21(1), January.
    2. James T. Wilkinson & Jacob Kelter & John Chen & Uri Wilensky, 2024. "A Network Simulation of OTC Markets with Multiple Agents," Papers 2405.02480, arXiv.org.
    3. Mathieu, Philippe & Morvan, Rémi, 2019. "A deterministic behaviour for realistic price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 33-49.
    4. Kirchler, Michael, 2010. "Partial knowledge is a dangerous thing - On the value of asymmetric fundamental information in asset markets," Journal of Economic Psychology, Elsevier, vol. 31(4), pages 643-658, August.
    5. Kirchler, Michael & Huber, Jürgen, 2009. "An exploration of commonly observed stylized facts with data from experimental asset markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1631-1658.
    6. Scalas, Enrico & Rapallo, Fabio & Radivojević, Tijana, 2017. "Low-traffic limit and first-passage times for a simple model of the continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 61-72.
    7. Robin Nicole & Aleksandra Alori'c & Peter Sollich, 2020. "Fragmentation in trader preferences among multiple markets: Market coexistence versus single market dominance," Papers 2012.04103, arXiv.org, revised Aug 2021.
    8. Andreas Gronlund & Il Gu Yi & Beom Jun Kim, 2012. "Fractal Profit Landscape of the Stock Market," Papers 1205.0505, arXiv.org.
    9. Andreas Grönlund & Il Gu Yi & Beom Jun Kim, 2012. "Fractal Profit Landscape of the Stock Market," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-5, April.
    10. Aleksandra Alorić & Peter Sollich & Peter McBurney & Tobias Galla, 2016. "Emergence of Cooperative Long-Term Market Loyalty in Double Auction Markets," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-26, April.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0610026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.