IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v69y2017icp529-540.html
   My bibliography  Save this article

Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)

Author

Listed:
  • Mustafa, Ahmed
  • Cools, Mario
  • Saadi, Ismaïl
  • Teller, Jacques

Abstract

Several methods for modeling urban expansion are available. Most of them are based on a statistical, a cellular automaton (CA) and/or an agent-based (AB) approach. Statistical and CA approaches are based on the implicit assumption that people's behavior is not likely to change over the considered time horizon. Such assumption limits the ability to simulate long-term predictions as people’s behavior changes over time. An approach to consider people’s behavior is the use of an AB system, in which the decision-making process of agents needs to be parameterized. Most existing studies, which make use of empirical data to define the agents' decision-making criteria, rely on intensive data collection efforts. The considerable data requirements limit the AB-system's ability to model a large study area, as the number of agents for which data on decision-making criteria is required, increases with the size of the study area. This paper presents a hybrid urban expansion model (HUEM) that integrates logistic regression (Logit), CA and AB approaches to simulate future urban development. A key feature of HUEM lies in its ability to address various people behaviors that are variable over time through AB relying on a sample approach that combines Logit and CA. Three agent sets are defined; developer agents, farmer agents and planning permission authority agent. The agents’ decision-making process is parameterized using CA and Logit models. The interactions of the agents are simulated through a series of rules. To assess HUEM performance, it is calibrated for Wallonia (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated map and the actual 2000 land-use map. Furthermore, the performance of HUEM is compared to a number of typical spatial urban expansion models, i.e. Logit model, CA model and CA-Logit to assess the added-value of HUEM. The comparison shows the performance of HUEM is better than other models in terms of allocation ability.

Suggested Citation

  • Mustafa, Ahmed & Cools, Mario & Saadi, Ismaïl & Teller, Jacques, 2017. "Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)," Land Use Policy, Elsevier, vol. 69(C), pages 529-540.
  • Handle: RePEc:eee:lauspo:v:69:y:2017:i:c:p:529-540
    DOI: 10.1016/j.landusepol.2017.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837715302714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    2. Verhetsel, Ann & Thomas, Isabelle & Beelen, Marjan, 2010. "Commuting in Belgian metropolitan areas: The power of the Alonso-Muth model," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 109-131.
    3. Bert, Federico E. & Podestá, Guillermo P. & Rovere, Santiago L. & Menéndez, Ángel N. & North, Michael & Tatara, Eric & Laciana, Carlos E. & Weber, Elke & Toranzo, Fernando Ruiz, 2011. "An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas," Ecological Modelling, Elsevier, vol. 222(19), pages 3486-3499.
    4. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    5. Liu, Xiaoping & Li, Xia & Shi, Xun & Wu, Shaokun & Liu, Tao, 2008. "Simulating complex urban development using kernel-based non-linear cellular automata," Ecological Modelling, Elsevier, vol. 211(1), pages 169-181.
    6. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).
    2. Ali Alghamdi & Anthony R. Cummings, 2019. "Assessing Riyadh’s Urban Change Utilizing High-Resolution Imagery," Land, MDPI, vol. 8(12), pages 1-16, December.
    3. Chun Li & Jianhua He & Xingwu Duan, 2020. "Modeling the Collaborative Evolution of Urban Land Considering Urban Interactions under Intermediate Intervention, in the Urban Agglomeration in the Middle Reaches of the Yangtze River in China," Land, MDPI, vol. 9(6), pages 1-18, June.
    4. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    5. Feng, Rundong & Wang, Kaiyong, 2021. "Spatiotemporal effects of administrative division adjustment on urban expansion in China," Land Use Policy, Elsevier, vol. 101(C).
    6. Ye, Bin & Jiang, Jingjing & Liu, Junguo & Zheng, Yi & Zhou, Nan, 2021. "Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Raphael Karutz & Christian J. A. Klassert & Sigrun Kabisch, 2023. "On Farmland and Floodplains—Modeling Urban Growth Impacts Based on Global Population Scenarios in Pune, India," Land, MDPI, vol. 12(5), pages 1-21, May.
    8. Tingting Xu & Dingjie Zhou & Yuhua Li, 2022. "Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land Use Data," Land, MDPI, vol. 11(7), pages 1-15, July.
    9. Nafiseh Bahrami & Mohammad Reza Nikoo & Ghazi Al-Rawas & Khalifa Al-Jabri & Amir H. Gandomi, 2023. "Optimal Treated Wastewater Allocation Among Stakeholders Based on an Agent-based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 135-156, January.
    10. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    11. Ai, Bin & Xie, Dixiang & Ma, Shifa & Jiang, Haiyan, 2022. "An EasyCA model with few steady variables and clone stamp strategy for simulation of urban growth in metropolitan areas," Ecological Modelling, Elsevier, vol. 468(C).
    12. Bahrami, Nafiseh & Afshar, Abbas & Afshar, Mohammad Hadi, 2022. "An agent-based framework for simulating interactions between reservoir operators and farmers for reservoir management with dynamic demands," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Ahmed Mustafa & Jacques Teller, 2020. "Self-Reinforcing Processes Governing Urban Sprawl in Belgium: Evidence over Six Decades," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    14. Anasua Chakraborty & Hichem Omrani & Jacques Teller, 2022. "A Comparative Analysis of Drivers Impacting Urban Densification for Cross Regional Scenarios in Brussels Metropolitan Area," Land, MDPI, vol. 11(12), pages 1-20, December.
    15. Ahmed Mustafa & Anton Van Rompaey & Mario Cools & Ismaïl Saadi & Jacques Teller, 2018. "Addressing the determinants of built-up expansion and densification processes at the regional scale," Urban Studies, Urban Studies Journal Limited, vol. 55(15), pages 3279-3298, November.
    16. Anasua Chakraborty & Sujit Sikder & Hichem Omrani & Jacques Teller, 2022. "Cellular Automata in Modeling and Predicting Urban Densification: Revisiting the Literature since 1971," Land, MDPI, vol. 11(7), pages 1-19, July.
    17. Huang, Xinxin & Wang, Haijun & Xiao, Fentao, 2022. "Simulating urban growth affected by national and regional land use policies: Case study from Wuhan, China," Land Use Policy, Elsevier, vol. 112(C).
    18. Rui Xiao & Xiaoyu Yu & Zhonghao Zhang & Xue Wang, 2021. "Built‐up land expansion simulation with combination of naive Bayes and cellular automaton model—A case study of the Shanghai‐Hangzhou Bay agglomeration," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1804-1825, September.
    19. Sadooghi, Seyed Ehsan & Taleai, Mohammad & Abolhasani, Somaie, 2022. "Simulation of urban growth scenarios using integration of multi-criteria analysis and game theory," Land Use Policy, Elsevier, vol. 120(C).
    20. Jin, Gui & Chen, Kun & Wang, Pei & Guo, Baishu & Dong, Yin & Yang, Jun, 2019. "Trade-offs in land-use competition and sustainable land development in the North China Plain," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 36-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    2. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    3. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    4. Rui Zhou & Hao Zhang & Xin-Yue Ye & Xin-Jun Wang & Hai-Long Su, 2016. "The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    5. Shuqing Wang & Xinqi Zheng, 2023. "Dominant transition probability: combining CA-Markov model to simulate land use change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6829-6847, July.
    6. Yiting Zuo & Jie Cheng & Meichen Fu, 2022. "Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing," Land, MDPI, vol. 11(5), pages 1-27, April.
    7. Ahmed Mustafa & Anton Van Rompaey & Mario Cools & Ismaïl Saadi & Jacques Teller, 2018. "Addressing the determinants of built-up expansion and densification processes at the regional scale," Urban Studies, Urban Studies Journal Limited, vol. 55(15), pages 3279-3298, November.
    8. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    9. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    10. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    11. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    12. Li, Sheng & Nadolnyak, Denis & Hartarska, Valentina, 2019. "Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area," Land Use Policy, Elsevier, vol. 80(C), pages 380-390.
    13. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    14. Sarah Hasan & Wenzhong Shi & Xiaolin Zhu & Sawaid Abbas & Hafiz Usman Ahmed Khan, 2020. "Future Simulation of Land Use Changes in Rapidly Urbanizing South China Based on Land Change Modeler and Remote Sensing Data," Sustainability, MDPI, vol. 12(11), pages 1-24, May.
    15. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    16. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    17. Johanna CHOUMERT & Pascale PHELINAS, 2015. "Farmland Rental Values in GM Soybean Areas of Argentina: Do Contractual Arrangements Matter?," Working Papers 201532, CERDI.
    18. Zhang, Chunxiao & Chen, Min & Li, Rongrong & Fang, Chaoyang & Lin, Hui, 2016. "What's going on about geo-process modeling in virtual geographic environments (VGEs)," Ecological Modelling, Elsevier, vol. 319(C), pages 147-154.
    19. Elnert Coenegrachts & Joris Beckers & Thierry Vanelslander & Ann Verhetsel, 2021. "Business Model Blueprints for the Shared Mobility Hub Network," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    20. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:69:y:2017:i:c:p:529-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.