IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1051-d1144846.html
   My bibliography  Save this article

On Farmland and Floodplains—Modeling Urban Growth Impacts Based on Global Population Scenarios in Pune, India

Author

Listed:
  • Raphael Karutz

    (Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany)

  • Christian J. A. Klassert

    (Department of Economics, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany)

  • Sigrun Kabisch

    (Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 04318 Leipzig, Germany)

Abstract

Emerging megacities in the global south face unprecedented transformation dynamics, manifested in rapid demographic, economic, and physical growth. Anticipating the associated sustainability and resilience challenges requires an understanding of future trajectories. Global change models provide consistent high-level urbanization scenarios. City-scale urban growth models accurately simulate complex physical growth. Modeling approaches linking the global and the local scale, however, are underdeveloped. This work introduces a novel approach to inform a local urban growth model by global Shared Socioeconomic Pathways to produce consistent maps of future urban expansion and population density via cellular automaton and dasymetric mapping. We demonstrate the approach for the case of Pune, India. Three scenarios are explored until 2050: business as usual (BAU), high, and low urbanization. After calibration and validation, the BAU scenario yields a 55% growth in Pune’s population and 90% in built-up extent, entailing significant impacts: Pune’s core city densifies further with up to 60,000 persons/km 2 , adding pressure to its strained infrastructure. In addition, 66–70% more residents are exposed to flood risk. Half of the urban expansion replaces agriculture, converting 167 km 2 of land. The high-urbanization scenario intensifies these impacts. These results illustrate how spatially explicit scenario projections help identify impacts of urbanization and inform long-term planning.

Suggested Citation

  • Raphael Karutz & Christian J. A. Klassert & Sigrun Kabisch, 2023. "On Farmland and Floodplains—Modeling Urban Growth Impacts Based on Global Population Scenarios in Pune, India," Land, MDPI, vol. 12(5), pages 1-21, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1051-:d:1144846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaolin Liu & Xuesong Kong & Yanfang Liu & Yiyun Chen, 2013. "Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-14, November.
    2. Avashia, Vidhee & Garg, Amit, 2020. "Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities," Land Use Policy, Elsevier, vol. 95(C).
    3. van Vliet, Jasper & Bregt, Arnold K. & Hagen-Zanker, Alex, 2011. "Revisiting Kappa to account for change in the accuracy assessment of land-use change models," Ecological Modelling, Elsevier, vol. 222(8), pages 1367-1375.
    4. Mustafa, Ahmed & Cools, Mario & Saadi, Ismaïl & Teller, Jacques, 2017. "Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)," Land Use Policy, Elsevier, vol. 69(C), pages 529-540.
    5. Dupras, Jerôme & Marull, Joan & Parcerisas, Lluís & Coll, Francesc & Gonzalez, Andrew & Girard, Marc & Tello, Enric, 2016. "The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region," Environmental Science & Policy, Elsevier, vol. 58(C), pages 61-73.
    6. repec:nas:journl:v:115:y:2018:p:8328-8333 is not listed on IDEAS
    7. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    8. Ann-Christine Link & Yuanzao Zhu & Raphael Karutz, 2021. "Quantification of Resilience Considering Different Migration Biographies: A Case Study of Pune, India," Land, MDPI, vol. 10(11), pages 1-21, October.
    9. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    10. Shaikh Shamim Hasan & Xiangzheng Deng & Zhihui Li & Dongdong Chen, 2017. "Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    11. Duo Zheng & Guanshi Zhang & Hui Shan & Qichao Tu & Hongjuan Wu & Sen Li, 2020. "Spatio-Temporal Evolution of Urban Morphology in the Yangtze River Middle Reaches Megalopolis, China," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    12. Carsten Butsch & Shamita Kumar & Paul D. Wagner & Mareike Kroll & Lakshmi N. Kantakumar & Erach Bharucha & Karl Schneider & Frauke Kraas, 2017. "Growing ‘Smart’? Urbanization Processes in the Pune Urban Agglomeration," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    13. Kopal Kumar & Anargha Dhorde, 2021. "Impact of Land use Land cover change on Storm Runoff Generation: A case study of suburban catchments of Pune, Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4559-4572, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danish Khan & Nizamuddin Khan & Upasana Choudhury & Suraj Kumar Singh & Shruti Kanga & Pankaj Kumar & Gowhar Meraj, 2024. "Urban Expansion and Spatial Growth Patterns in Lucknow: Implications for Sustainable Development (1991–2021)," Sustainability, MDPI, vol. 17(1), pages 1-24, December.
    2. Heilemann, Jasmin & Klassert, Christian & Klauer, Bernd, 2024. "Addressing income inequality and climate change vulnerability in Pune, India: A scenario linkage approach," UFZ Discussion Papers 3/2024, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Binglin Liu & Shuang Xie & Minru Chen & Nini Yao & Weijiang Liu, 2025. "Analysis of the Spatial Pattern of Urban Expansion in African Countries Under Different Shared Socioeconomic Pathway (SSP) Scenarios," Land, MDPI, vol. 14(3), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Li & Jianhua He & Xingwu Duan, 2020. "Modeling the Collaborative Evolution of Urban Land Considering Urban Interactions under Intermediate Intervention, in the Urban Agglomeration in the Middle Reaches of the Yangtze River in China," Land, MDPI, vol. 9(6), pages 1-18, June.
    2. Raphael Karutz & Ines Omann & Steven M. Gorelick & Christian J. A. Klassert & Heinrich Zozmann & Yuanzao Zhu & Sigrun Kabisch & Annegret Kindler & Anjuli Jain Figueroa & Ankun Wang & Karin Küblböck & , 2022. "Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus—A Participatory Approach for Pune and the Bhima Basin, India," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    3. Tingting Xu & Dingjie Zhou & Yuhua Li, 2022. "Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land Use Data," Land, MDPI, vol. 11(7), pages 1-15, July.
    4. Anasua Chakraborty & Hichem Omrani & Jacques Teller, 2022. "A Comparative Analysis of Drivers Impacting Urban Densification for Cross Regional Scenarios in Brussels Metropolitan Area," Land, MDPI, vol. 11(12), pages 1-20, December.
    5. Anasua Chakraborty & Sujit Sikder & Hichem Omrani & Jacques Teller, 2022. "Cellular Automata in Modeling and Predicting Urban Densification: Revisiting the Literature since 1971," Land, MDPI, vol. 11(7), pages 1-19, July.
    6. Nazifa Rafa & Samiha Nuzhat & Sayed Mohammad Nazim Uddin & Mukesh Gupta & Rahul Rakshit, 2021. "Ecotourism as a Forest Conservation Tool: An NDVI Analysis of the Sitakunda Botanical Garden and Ecopark in Chattogram, Bangladesh," Sustainability, MDPI, vol. 13(21), pages 1-22, November.
    7. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    8. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    9. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    10. Ben Salah, Mhamed & Chambru, Cédric & Fourati, Maleke, 2024. "The colonial legacy of education: Evidence from Tunisia," Journal of Comparative Economics, Elsevier, vol. 52(4), pages 773-792.
    11. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    12. Sokolova, Maria V., 2016. "Exchange Rates, International Trade and Growth: Re-Evaluation of Undervaluation," Conference papers 332790, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    14. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    15. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    16. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    17. Muhallil Abtahee & Afra Anika Islam & Md. Nazmul Haque & Hasan Zonaed & Samiha Mahzabin Ritu & Sk Md Imdadul Islam & Atiq Zaman, 2023. "Mapping Ecotourism Potential in Bangladesh: The Integration of an Analytical Hierarchy Algorithm and Geospatial Data," Sustainability, MDPI, vol. 15(15), pages 1-28, July.
    18. Maggie MacKinnon & Maibritt Pedersen Zari & Daniel K. Brown, 2023. "Improving Urban Habitat Connectivity for Native Birds: Using Least-Cost Path Analyses to Design Urban Green Infrastructure Networks," Land, MDPI, vol. 12(7), pages 1-21, July.
    19. Sahoo, Dukhabandhu & Mohanty, Pritisudha & Mishra, Surbhi & Behera, Manash & Mohapatra, Souryabrata, 2024. "Does climate-smart agriculture technology improve the subjective well-being of farmers? Evidence from micro-level data," MPRA Paper 123955, University Library of Munich, Germany.
    20. Akoh Fabien Yao & Maxime Sèbe & Laura Recuero Virto & Abdelhak Nassiri & Hervé Dumez, 2024. "The effect of LNG bunkering on port competitiveness using multilevel data analysis [L'effet du soutage par GNL sur la compétitivité des ports à l'aide de l'analyse de données à plusieurs niveaux]," Post-Print hal-04611804, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1051-:d:1144846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.