IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v048i11.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned

Author

Listed:
  • Grün, Bettina
  • Kosmidis, Ioannis
  • Zeileis, Achim

Abstract

Beta regression – an increasingly popular approach for modeling rates and proportions – is extended in various directions: (a) bias correction/reduction of the maximum likelihood estimator, (b) beta regression tree models by means of recursive partitioning, (c) latent class beta regression by means of finite mixture models. All three extensions may be of importance for enhancing the beta regression toolbox in practice to provide more reliable inference and capture both observed and unobserved/latent heterogeneity in the data. Using the analogy of Smithson and Verkuilen (2006), these extensions make beta regression not only “a better lemon squeezer” (compared to classical least squares regression) but a full-fledged modern juicer offering lemon-based drinks: shaken and stirred (bias correction and reduction), mixed (finite mixture model), or partitioned (tree model). All three extensions are provided in the R package betareg (at least 2.4-0), building on generic algorithms and implementations for bias correction/reduction, model-based recursive partioning, and finite mixture models, respectively. Specifically, the new functions betatree() and betamix() reuse the object-oriented flexible implementation from the R packages party and flexmix, respectively.

Suggested Citation

  • Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
  • Handle: RePEc:jss:jstsof:v:048:i11
    DOI: http://hdl.handle.net/10.18637/jss.v048.i11
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v048i11/v48i11.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v048i11/betareg_3.0-0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v048i11/v48i11.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v048.i11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    2. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    3. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    4. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    5. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    6. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    7. Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
    8. Ospina, Raydonal & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2006. "Improved point and interval estimation for a beta regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 960-981, November.
    9. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    10. Zeileis, Achim & Croissant, Yves, 2010. "Extended Model Formulas in R: Multiple Parts and Multiple Responses," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    2. Kearney, Aubrey D. & Wilson, Elisabeth S. & Hollinshead, Dana M. & Poletika, Michael & Kestian, Heather H. & Stigdon, Terry J. & Miller, Eric A. & Fluke, John D., 2023. "Child welfare triage: Use of screening threshold analysis to evaluate intake decision-making," Children and Youth Services Review, Elsevier, vol. 144(C).
    3. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    4. Chen, Kee Kuo & Chiu, Rong-Her & Chang, Ching-Ter, 2017. "Using beta regression to explore the relationship between service attributes and likelihood of customer retention for the container shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 1-16.
    5. Diederik Strubbe & Laura Jiménez & A. Márcia Barbosa & Amy J. S. Davis & Luc Lens & Carsten Rahbek, 2023. "Mechanistic models project bird invasions with accuracy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    7. Hui Ye & Anthony Bellotti, 2019. "Modelling Recovery Rates for Non-Performing Loans," Risks, MDPI, vol. 7(1), pages 1-17, February.
    8. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    9. Saraev, Vadim & Valatin, Gregory & Peace, Andrew & Quine, Christopher, 2019. "How does a biodiversity value impact upon optimal rotation length? An investigation using species richness and forest stand age," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    10. Wladislaw Mill & John Morgan, 2022. "The cost of a divided America: an experimental study into destructive behavior," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 974-1001, June.
    11. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    12. Emilio Gómez-Déniz & Jorge V Pérez-Rodríguez & José Boza-Chirino, 2020. "Modelling tourist expenditure at origin and destination," Tourism Economics, , vol. 26(3), pages 437-460, May.
    13. Di Caterina, Claudia & Kosmidis, Ioannis, 2019. "Location-adjusted Wald statistics for scalar parameters," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 126-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:34:i02 is not listed on IDEAS
    2. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    3. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.
    4. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    5. Hui Ye & Anthony Bellotti, 2019. "Modelling Recovery Rates for Non-Performing Loans," Risks, MDPI, vol. 7(1), pages 1-17, February.
    6. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
    7. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    8. Li-Chu Chien, 2013. "Multiple deletion diagnostics in beta regression models," Computational Statistics, Springer, vol. 28(4), pages 1639-1661, August.
    9. Diego Ramos Canterle & Fábio Mariano Bayer, 2019. "Variable dispersion beta regressions with parametric link functions," Statistical Papers, Springer, vol. 60(5), pages 1541-1567, October.
    10. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    11. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    12. Chen, Kee Kuo & Chiu, Rong-Her & Chang, Ching-Ter, 2017. "Using beta regression to explore the relationship between service attributes and likelihood of customer retention for the container shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 1-16.
    13. Thomas Windberger & Achim Zeileis, 2011. "Structural Breaks in Inflation Dynamics within the European Monetary Union," Working Papers 2011-12, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    15. Souza, Tatiene C. & Cribari–Neto, Francisco, 2018. "Intelligence and religious disbelief in the United States," Intelligence, Elsevier, vol. 68(C), pages 48-57.
    16. Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
    17. Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
    18. Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
    19. Edouard Civel & Nathaly Cruz-Garcia, 2018. "Green, yellow or red lemons? Framed field experiment on houses energy labels perception," EconomiX Working Papers 2018-35, University of Paris Nanterre, EconomiX.
    20. Edouard Civel & Nathaly Cruz, 2018. "Green, yellow or red lemons? Artefactual field experiment on houses energy labels perception," Working Papers 1809, Chaire Economie du climat.
    21. Collier, Benjamin, 2013. "Exclusive finance: How unmanaged systemic risk continues to limit financial services for the poor in a booming sector," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150433, Agricultural and Applied Economics Association.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:048:i11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.