IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i4d10.1007_s13253-016-0265-2.html
   My bibliography  Save this article

Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution

Author

Listed:
  • Kathryn M. Irvine

    (Northern Rocky Mountain Science Center)

  • T. J. Rodhouse

    (Upper Columbia Basin Network)

  • Ilai N. Keren

    (Washington Department of Fish and Wildlife)

Abstract

Ecological abundance data are often recorded on an ordinal scale in which the lowest category represents species absence. One common example is when plant species cover is visually assessed within bounded quadrats and then assigned to pre-defined cover class categories. We present an ordinal beta hurdle model that directly models ordinal category probabilities with a biologically realistic beta-distributed latent variable. A hurdle-at-zero model allows ecologists to explore distribution (absence) and abundance processes in an integrated framework. This provides an alternative to cumulative link models when data are inconsistent with the assumption that the odds of moving into a higher category are the same for all categories (proportional odds). Graphical tools and a deviance information criterion were developed to assess whether a hurdle-at-zero model should be used for inferences rather than standard ordinal methods. Hurdle-at-zero and non-hurdle ordinal models fit to vegetation cover class data produced substantially different conclusions. The ordinal beta hurdle model yielded more precise parameter estimates than cumulative logit models, although out-of-sample predictions were similar. The ordinal beta hurdle model provides inferences directly on the latent biological variable of interest, percent cover, and supports exploration of more realistic ecological patterns and processes through the hurdle-at-zero or two-part specification. We provide JAGS code as an on-line supplement. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:4:d:10.1007_s13253-016-0265-2
    DOI: 10.1007/s13253-016-0265-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-016-0265-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-016-0265-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Megan D. Higgs & Jay M. Ver Hoef, 2012. "Discretized and Aggregated: Modeling Dive Depth of Harbor Seals from Ordered Categorical Data with Temporal Autocorrelation," Biometrics, The International Biometric Society, vol. 68(3), pages 965-974, September.
    2. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    3. Russell B. Millar, 2009. "Comparison of Hierarchical Bayesian Models for Overdispersed Count Data using DIC and Bayes' Factors," Biometrics, The International Biometric Society, vol. 65(3), pages 962-969, September.
    4. Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
    5. Kim, Ji-Hyun, 2003. "Assessing practical significance of the proportional odds assumption," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 233-239, November.
    6. Chen, Jun & Shiyomi, Masae & Hori, Yoshimichi & Yamamura, Yasuo, 2008. "Frequency distribution models for spatial patterns of vegetation abundance," Ecological Modelling, Elsevier, vol. 211(3), pages 403-410.
    7. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    8. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    9. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    10. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.
    11. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ejike R. Ugba & Daniel Mörlein & Jan Gertheiss, 2021. "Smoothing in Ordinal Regression: An Application to Sensory Data," Stats, MDPI, vol. 4(3), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
    2. Damgaard, Christian, 2008. "Modelling pin-point plant cover data along an environmental gradient," Ecological Modelling, Elsevier, vol. 214(2), pages 404-410.
    3. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    4. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Becky Tang & Henry A. Frye & Alan E. Gelfand & John A. Silander, 2023. "Zero-Inflated Beta Distribution Regression Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 117-137, March.
    6. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Cristine Rauber & Francisco Cribari-Neto & Fábio M. Bayer, 2020. "Improved testing inferences for beta regressions with parametric mean link function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 687-717, December.
    8. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    9. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    10. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    11. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
    12. Guillermo Martínez-Flórez & Heleno Bolfarine & Héctor Gómez, 2015. "Doubly censored power-normal regression models with inflation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 265-286, June.
    13. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    14. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    15. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    16. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    18. Fábio M. Bayer & Francisco Cribari‐Neto & Jéssica Santos, 2021. "Inflated Kumaraswamy regressions with application to water supply and sanitation in Brazil," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 453-481, November.
    19. Edilberto Cepeda-Cuervo & Vicente Núñez-Antón, 2013. "Spatial Double Generalized Beta Regression Models," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 604-628, December.
    20. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:4:d:10.1007_s13253-016-0265-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.