IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v26y2015i6p1558-1568..html
   My bibliography  Save this article

Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest

Author

Listed:
  • Dries P.J. Kuijper
  • Jakub W. Bubnicki
  • Marcin Churski
  • Bjorn Mols
  • Pim van Hooft

Abstract

Large mammalian carnivores create areas perceived as having high and low risk by their ungulate prey. Human activities can indirectly shape this landscape of fear by altering behavior and spatial distribution of carnivores. We studied how red deer perceive the landscape of fear in an old-growth forest system (Białowieża Primeval Forest, Poland) both at large and fine spatial scale. Camera traps were placed at locations with and without tree logs (fine-scale risk factor) and at different distances from the core of a wolf territory and human settlements (large-scale risk factor). Red deer avoided coming close to large tree logs and increased their vigilance levels when they were present in close vicinity. The strength of these effects depended on the distance to the wolf core area; deer perceived tree logs as more risky when wolves were more often present. Hence, tree logs inside wolf core areas create fine-scale patches of fear with reduced deer browsing pressure, thereby enhancing chances for successful tree recruitment. Human presence shapes this landscape of fear as wolf core areas are located far from human settlements. This "human shadow" on predator–prey interactions is therefore an important component that should be taken into account in human-dominated landscapes.

Suggested Citation

  • Dries P.J. Kuijper & Jakub W. Bubnicki & Marcin Churski & Bjorn Mols & Pim van Hooft, 2015. "Context dependence of risk effects: wolves and tree logs create patches of fear in an old-growth forest," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1558-1568.
  • Handle: RePEc:oup:beheco:v:26:y:2015:i:6:p:1558-1568.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arv107
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
    2. Stewart Liley & Scott Creel, 2008. "What best explains vigilance in elk: characteristics of prey, predators, or the environment?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 19(2), pages 245-254.
    3. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. S. Périquet & L. Todd-Jones & M. Valeix & B. Stapelkamp & N. Elliot & M. Wijers & O. Pays & D. Fortin & H. Madzikanda & H. Fritz & D. W. Macdonald & A. J. Loveridge, 2012. "Influence of immediate predation risk by lions on the vigilance of prey of different body size," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(5), pages 970-976.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Zbyryt & Jakub W Bubnicki & Dries P J Kuijper & Martin Dehnhard & Marcin Churski & Krzysztof Schmidt & Bob WongHandling editor, 2018. "Do wild ungulates experience higher stress with humans than with large carnivores?," Behavioral Ecology, International Society for Behavioral Ecology, vol. 29(1), pages 19-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    2. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    3. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    4. Guillermo Martínez-Flórez & Artur J. Lemonte & Germán Moreno-Arenas & Roger Tovar-Falón, 2022. "The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    5. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    6. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    7. Ehsan Bahrami Samani & Elham Tabrizi, 2023. "Joint Linear Modeling of Mixed Data and Its Application to Email Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 175-209, May.
    8. Murilo Wohlgemuth & Carlos Ernani Fries & Ângelo Márcio Oliveira Sant’Anna & Ricardo Giglio & Diego Castro Fettermann, 2020. "Assessment of the technical efficiency of Brazilian logistic operators using data envelopment analysis and one inflated beta regression," Annals of Operations Research, Springer, vol. 286(1), pages 703-717, March.
    9. Gauss Cordeiro & Denise Botter & Alexsandro Cavalcanti & Lúcia Barroso, 2014. "Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models," Statistical Papers, Springer, vol. 55(3), pages 643-652, August.
    10. Yury R. Benites & Vicente G. Cancho & Edwin M. M. Ortega & Roberto Vila & Gauss M. Cordeiro, 2022. "A New Regression Model on the Unit Interval: Properties, Estimation, and Application," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    11. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2022. "Inflated Unit-Birnbaum-Saunders Distribution," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    12. Hildete P. Pinheiro & Rafael P. Maia & Eufrásio A. Lima Neto & Mariana Rodrigues-Motta, 2019. "Zero-one augmented beta and zero-inflated discrete models with heterogeneous dispersion for the analysis of student academic performance," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 749-767, December.
    13. Maria Gheorghe & Werner Brouwer & Pieter Baal, 2015. "Did the health of the Dutch population improve between 2001 and 2008? Investigating age- and gender-specific trends in quality of life," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(8), pages 801-811, November.
    14. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
    15. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    16. Figueroa-Zúñiga, Jorge I. & Arellano-Valle, Reinaldo B. & Ferrari, Silvia L.P., 2013. "Mixed beta regression: A Bayesian perspective," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 137-147.
    17. Raffaele Brancati & Emanuela Marrocu & Manuel Romagnoli & Stefano Usai, 2018. "Innovation activities and learning processes in the crisis: evidence from Italian export in manufacturing and services," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(1), pages 107-130.
    18. Guillermo Martínez-Flórez & Heleno Bolfarine & Héctor Gómez, 2015. "Doubly censored power-normal regression models with inflation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 265-286, June.
    19. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    20. Guillermo Martínez-Flórez & Roger Tovar-Falón & Víctor Leiva & Cecilia Castro, 2024. "Skew-Normal Inflated Models: Mathematical Characterization and Applications to Medical Data with Excess of Zeros and Ones," Mathematics, MDPI, vol. 12(16), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:26:y:2015:i:6:p:1558-1568.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.