IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i1d10.1007_s11336-017-9591-8.html
   My bibliography  Save this article

Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation

Author

Listed:
  • Ting Wang

    (University of Missouri)

  • Carolin Strobl

    (University of Zurich)

  • Achim Zeileis

    (Universität Innsbruck)

  • Edgar C. Merkle

    (University of Missouri)

Abstract

Measurement invariance is a fundamental assumption in item response theory models, where the relationship between a latent construct (ability) and observed item responses is of interest. Violation of this assumption would render the scale misinterpreted or cause systematic bias against certain groups of persons. While a number of methods have been proposed to detect measurement invariance violations, they typically require advance definition of problematic item parameters and respondent grouping information. However, these pieces of information are typically unknown in practice. As an alternative, this paper focuses on a family of recently proposed tests based on stochastic processes of casewise derivatives of the likelihood function (i.e., scores). These score-based tests only require estimation of the null model (when measurement invariance is assumed to hold), and they have been previously applied in factor-analytic, continuous data contexts as well as in models of the Rasch family. In this paper, we aim to extend these tests to two-parameter item response models, with strong emphasis on pairwise maximum likelihood. The tests’ theoretical background and implementation are detailed, and the tests’ abilities to identify problematic item parameters are studied via simulation. An empirical example illustrating the tests’ use in practice is also provided.

Suggested Citation

  • Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9591-8
    DOI: 10.1007/s11336-017-9591-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9591-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9591-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edgar Merkle & Jinyan Fan & Achim Zeileis, 2014. "Testing for Measurement Invariance with Respect to an Ordinal Variable," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 569-584, October.
    2. Wim Van den Noortgate & Paul De Boeck, 2005. "Assessing and Explaining Differential Item Functioning Using Logistic Mixed Models," Journal of Educational and Behavioral Statistics, , vol. 30(4), pages 443-464, December.
    3. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    4. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
    5. Cees Glas, 1999. "Modification indices for the 2-PL and the nominal response model," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 273-294, September.
    6. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    7. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    8. Gerhard Fischer, 1995. "Some neglected problems in IRT," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 459-487, December.
    9. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    10. Nambury Raju, 1988. "The area between two item characteristic curves," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 495-502, December.
    11. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    12. David Thissen, 1982. "Marginal maximum likelihood estimation for the one-parameter logistic model," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 175-186, June.
    13. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    14. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    15. Carolin Strobl & Julia Kopf & Achim Zeileis, 2015. "Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 289-316, June.
    16. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    17. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    18. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," LSE Research Online Documents on Economics 43182, London School of Economics and Political Science, LSE Library.
    19. Timo Bechger & Gunter Maris, 2015. "A Statistical Test for Differential Item Pair Functioning," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 317-340, June.
    20. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    21. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. B. S. Huth & L. J. Waldorp & J. Luigjes & A. E. Goudriaan & R. J. Holst & M. Marsman, 2022. "A Note on the Structural Change Test in Highly Parameterized Psychometric Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1064-1080, September.
    2. Jeanne A. Teresi & Chun Wang & Marjorie Kleinman & Richard N. Jones & David J. Weiss, 2021. "Differential Item Functioning Analyses of the Patient-Reported Outcomes Measurement Information System (PROMIS®) Measures: Methods, Challenges, Advances, and Future Directions," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 674-711, September.
    3. Ting Wang & Benjamin Graves & Yves Rosseel & Edgar C. Merkle, 2022. "Computation and application of generalized linear mixed model derivatives using lme4," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1173-1193, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2016. "Score-Based Tests of Differential Item Functioning in the Two-Parameter Model," Working Papers 2016-05, Faculty of Economics and Statistics, Universität Innsbruck.
    2. K. B. S. Huth & L. J. Waldorp & J. Luigjes & A. E. Goudriaan & R. J. Holst & M. Marsman, 2022. "A Note on the Structural Change Test in Highly Parameterized Psychometric Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1064-1080, September.
    3. Ting Wang & Benjamin Graves & Yves Rosseel & Edgar C. Merkle, 2022. "Computation and application of generalized linear mixed model derivatives using lme4," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1173-1193, September.
    4. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    5. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    6. Edgar Merkle & Jinyan Fan & Achim Zeileis, 2014. "Testing for Measurement Invariance with Respect to an Ordinal Variable," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 569-584, October.
    7. Ting Wang & Edgar C. Merkle & Achim Zeileis, 2013. "Score-Based Tests of Measurement Invariance: Use in Practice," Working Papers 2013-33, Faculty of Economics and Statistics, Universität Innsbruck.
    8. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    9. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    10. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    11. Ke-Hai Yuan & Hongyun Liu & Yuting Han, 2021. "Differential Item Functioning Analysis Without A Priori Information on Anchor Items: QQ Plots and Graphical Test," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 345-377, June.
    12. Chen, Yunxiao & Li, Chengcheng & Ouyang, Jing & Xu, Gongjun, 2023. "DIF statistical inference without knowing anchoring items," LSE Research Online Documents on Economics 119923, London School of Economics and Political Science, LSE Library.
    13. Jeanne A. Teresi & Chun Wang & Marjorie Kleinman & Richard N. Jones & David J. Weiss, 2021. "Differential Item Functioning Analyses of the Patient-Reported Outcomes Measurement Information System (PROMIS®) Measures: Methods, Challenges, Advances, and Future Directions," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 674-711, September.
    14. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    15. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    16. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    17. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    18. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. Zachary F. Fisher & Kenneth A. Bollen, 2020. "An Instrumental Variable Estimator for Mixed Indicators: Analytic Derivatives and Alternative Parameterizations," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 660-683, September.
    20. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9591-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.