IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p4243-4258.html
   My bibliography  Save this article

Pairwise likelihood estimation for factor analysis models with ordinal data

Author

Listed:
  • Katsikatsou, Myrsini
  • Moustaki, Irini
  • Yang-Wallentin, Fan
  • Jöreskog, Karl G.

Abstract

A pairwise maximum likelihood (PML) estimation method is developed for factor analysis models with ordinal data and fitted both in an exploratory and confirmatory set-up. The performance of the method is studied via simulations and comparisons with full information maximum likelihood (FIML) and three-stage limited information estimation methods, namely the robust unweighted least squares (3S-RULS) and robust diagonally weighted least squares (3S-RDWLS). The advantage of PML over FIML is mainly computational. Unlike PML estimation, the computational complexity of FIML estimation increases either with the number of factors or with the number of observed variables depending on the model formulation. Contrary to 3S-RULS and 3S-RDWLS estimation, PML estimates of all model parameters are obtained simultaneously and the PML method does not require the estimation of a weight matrix for the computation of correct standard errors. The simulation study on the performance of PML estimates and estimated asymptotic standard errors investigates the effect of different model and sample sizes. The bias and mean squared error of PML estimates and their standard errors are found to be small in all experimental conditions and decreasing with increasing sample size. Moreover, the PML estimates and their standard errors are found to be very close to those of FIML.

Suggested Citation

  • Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4243-4258
    DOI: 10.1016/j.csda.2012.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001739
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    2. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    3. Sik-Yum Lee & Wai-Yin Poon & P. Bentler, 1992. "Structural equation models with continuous and polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 89-105, March.
    4. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    5. de Leon, A.R., 2005. "Pairwise likelihood approach to grouped continuous model and its extension," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 49-57, November.
    6. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    7. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    8. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 443-460, December.
    9. Maydeu-Olivares, Albert & Joe, Harry, 2005. "Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1009-1020, September.
    10. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    11. Sik-Yum Lee & Wai-Yin Poon & P. Bentler, 1990. "A three-stage estimation procedure for structural equation models with polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 45-51, March.
    12. Harry Joe & Alberto Maydeu-Olivares, 2010. "A General Family of Limited Information Goodness-of-Fit Statistics for Multinomial Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 393-419, September.
    13. Lee, Sik-Yum & Poon, Wai-Yin & Bentler, P. M., 1990. "Full maximum likelihood analysis of structural equation models with polytomous variables," Statistics & Probability Letters, Elsevier, vol. 9(1), pages 91-97, January.
    14. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    15. Kenneth Bollen & Albert Maydeu-Olivares, 2007. "A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 309-326, September.
    16. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    2. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    3. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    4. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    5. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    6. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    7. Alfonzetti, Giuseppe & Bellio, Ruggero & Chen, Yunxiao & Moustaki, Irini, 2025. "Pairwise stochastic approximation for confirmatory factor analysis of categorical data," LSE Research Online Documents on Economics 122638, London School of Economics and Political Science, LSE Library.
    8. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    9. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Yang Liu & Ji Seung Yang & Alberto Maydeu-Olivares, 2019. "Restricted Recalibration of Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 529-553, June.
    11. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    12. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    13. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    14. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    15. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    16. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    17. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    18. K. Florios & I. Moustaki & D. Rizopoulos & V. Vasdekis, 2015. "A modified weighted pairwise likelihood estimator for a class of random effects models," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 217-228, August.
    19. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    20. Shaobo Jin & Fan Yang-Wallentin & Kenneth A. Bollen, 2021. "A unified model-implied instrumental variable approach for structural equation modeling with mixed variables," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 564-594, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4243-4258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.