IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v100y2005p1009-1020.html
   My bibliography  Save this article

Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework

Author

Listed:
  • Maydeu-Olivares, Albert
  • Joe, Harry

Abstract

No abstract is available for this item.

Suggested Citation

  • Maydeu-Olivares, Albert & Joe, Harry, 2005. "Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1009-1020, September.
  • Handle: RePEc:bes:jnlasa:v:100:y:2005:p:1009-1020
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2005/00000100/00000471/art00030
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Templin & Laine Bradshaw, 2014. "Hierarchical Diagnostic Classification Models: A Family of Models for Estimating and Testing Attribute Hierarchies," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 317-339, April.
    2. William Breffle & Edward Morey & Jennifer Thacher, 2011. "A Joint Latent-Class Model: Combining Likert-Scale Preference Statements With Choice Data to Harvest Preference Heterogeneity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(1), pages 83-110, September.
    3. Molenaar, Dylan & Tuerlinckx, Francis & van der Maas, Han L. J., 2015. "Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R Package diffIRT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i04).
    4. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    5. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    6. Harry Joe & Alberto Maydeu-Olivares, 2010. "A General Family of Limited Information Goodness-of-Fit Statistics for Multinomial Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 393-419, September.
    7. Jules Ellis, 2014. "An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 303-316, April.
    8. repec:pal:jmarka:v:4:y:2016:i:1:d:10.1057_jma.2016.4 is not listed on IDEAS
    9. Silvia cagnone & Stefania Mignani, 2007. "Assessing the goodness of fit of a latent variable model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 337-361.
    10. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    11. repec:eee:csdana:v:56:y:2012:i:12:p:4243-4258 is not listed on IDEAS
    12. repec:spr:psycho:v:83:y:2018:i:3:d:10.1007_s11336-018-9629-6 is not listed on IDEAS
    13. Qian, Zhiguang & Shapiro, Alexander, 2006. "Simulation-based approach to estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1243-1259, November.
    14. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    15. Jonathan Templin & Laine Bradshaw, 2013. "Measuring the Reliability of Diagnostic Classification Model Examinee Estimates," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 251-275, July.
    16. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    17. Kim, Sung-Ho & Choi, Hyemi & Lee, Sangjin, 2009. "Estimate-based goodness-of-fit test for large sparse multinomial distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1122-1131, February.
    18. Tang, Min & Slud, Eric V. & Pfeiffer, Ruth M., 2014. "Goodness of fit tests for linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 176-193.
    19. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:100:y:2005:p:1009-1020. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.