IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/87592.html
   My bibliography  Save this paper

Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables

Author

Listed:
  • Papageorgiou, Ioulia
  • Moustaki, Irini

Abstract

Pairwise likelihood is a limited information estimation method that has also been used for estimating the parameters of latent variable and structural equation models. Pairwise likelihood is a special case of composite likelihood methods that uses lower order conditional or marginal log-likelihoods instead of the full log-likelihood. The composite likelihood to be maximized is a weighted sum of marginal or conditional log-likelihoods. Weighting has been proposed for increasing efficiency but the choice of weights is not straightforward in most applications. Furthermore, the importance of leaving out higher order scores to avoid duplicating lower order marginal information has been pointed out. In this paper, we approach the problem of weighting from a sampling perspective. More especially, we propose a sampling method for selecting pairs based on their contribution to the total variance from all pairs. The sampling approach does not aim to increase efficiency but to decrease the estimation time, especially in models with a large number of observed categorical variables. We demonstrate the performance of the proposed methodology using simulated examples and a real application.

Suggested Citation

  • Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:87592
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/87592/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robin Henderson, 2003. "A serially correlated gamma frailty model for longitudinal count data," Biometrika, Biometrika Trust, vol. 90(2), pages 355-366, June.
    2. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    3. Wai Chan & Peter Bentler, 1998. "Covariance structure analysis of ordinal ipsative data," Psychometrika, Springer;The Psychometric Society, vol. 63(4), pages 369-399, December.
    4. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    5. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    6. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    7. Vasdekis, Vassilis G. S. & Rizopoulos, Dimitris & Moustaki, Irini, 2014. "Weighted pairwise likelihood estimation for a general class of random effects models," LSE Research Online Documents on Economics 56733, London School of Economics and Political Science, LSE Library.
    8. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," LSE Research Online Documents on Economics 43182, London School of Economics and Political Science, LSE Library.
    9. James Lingoes & Peter Schönemann, 1974. "Alternative measures of fit for the Schönemann-carroll matrix fitting algorithm," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 423-427, December.
    10. Mayer Claus-Dieter & Lorent Julie & Horgan Graham W, 2011. "Exploratory Analysis of Multiple Omics Datasets Using the Adjusted RV Coefficient," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, March.
    11. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    12. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    13. Cristiano Varin & Paolo Vidoni, 2005. "A note on composite likelihood inference and model selection," Biometrika, Biometrika Trust, vol. 92(3), pages 519-528, September.
    14. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    15. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
    16. Lee, Sik-Yum & Poon, Wai-Yin & Bentler, P. M., 1990. "Full maximum likelihood analysis of structural equation models with polytomous variables," Statistics & Probability Letters, Elsevier, vol. 9(1), pages 91-97, January.
    17. Sik-Yum Lee & Wai-Yin Poon & P. Bentler, 1992. "Structural equation models with continuous and polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 89-105, March.
    18. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
    19. P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
    20. David Haziza & Fulvia Mecatti & J.N.K. Rao, 2008. "Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 91-108.
    21. Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
    22. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.
    2. K. Florios & I. Moustaki & D. Rizopoulos & V. Vasdekis, 2015. "A modified weighted pairwise likelihood estimator for a class of random effects models," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 217-228, August.
    3. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    4. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    6. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
    7. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    9. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    10. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    11. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    12. Zhang, Haoran & Chen, Yunxiao & Li, Xiaoou, 2020. "A note on exploratory item factor analysis by singular value decomposition," LSE Research Online Documents on Economics 104166, London School of Economics and Political Science, LSE Library.
    13. Haoran Zhang & Yunxiao Chen & Xiaoou Li, 2020. "A Note on Exploratory Item Factor Analysis by Singular Value Decomposition," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 358-372, June.
    14. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.
    15. Ipek Sener & Chandra Bhat, 2012. "Flexible spatial dependence structures for unordered multinomial choice models: formulation and application to teenagers’ activity participation," Transportation, Springer, vol. 39(3), pages 657-683, May.
    16. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    17. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    18. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    19. Zachary F. Fisher & Kenneth A. Bollen, 2020. "An Instrumental Variable Estimator for Mixed Indicators: Analytic Derivatives and Alternative Parameterizations," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 660-683, September.
    20. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.

    More about this item

    Keywords

    principal component analysis; structural equation models; factor analysis; composite likelihood;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:87592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.