IDEAS home Printed from
   My bibliography  Save this article

Pairwise likelihood approach to grouped continuous model and its extension


  • de Leon, A.R.


A pseudo-likelihood estimation method for the grouped continuous model and its extension to mixed ordinal and continuous data is proposed as an alternative to maximum likelihood estimation. The method, based on the pairwise likelihood approach, advocates simply pooling marginal pairwise likelihoods to approximate the full likelihood. In addition to being consistent and asymptotically normally distributed, maximum pairwise likelihood estimates are computationally simple to obtain. Simulations show that the estimates are quite accurate, yielding minimal bias and small root mean-squared errors. The methodology is illustrated using real-data examples.

Suggested Citation

  • de Leon, A.R., 2005. "Pairwise likelihood approach to grouped continuous model and its extension," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 49-57, November.
  • Handle: RePEc:eee:stapro:v:75:y:2005:i:1:p:49-57

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Sik-Yum Lee & Wai-Yin Poon, 1986. "Maximum likelihood estimation of polyserial correlations," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 113-121, March.
    2. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    3. Wai-Yin Poon & Sik-Yum Lee, 1987. "Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 409-430, September.
    4. E. T. Parner, 2001. "A Composite Likelihood Approach to Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 295-302, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    2. Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
    3. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    4. Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
    5. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    6. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    7. Ferdous, Nazneen & Eluru, Naveen & Bhat, Chandra R. & Meloni, Italo, 2010. "A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 922-943, September.
    8. Katsikatsou, Myrsini & Moustaki, Irini & Yang-Wallentin, Fan & Jöreskog, Karl G., 2012. "Pairwise likelihood estimation for factor analysis models with ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4243-4258.
    9. Myrsini Katsikatsou & Irini Moustaki, 2016. "Pairwise Likelihood Ratio Tests and Model Selection Criteria for Structural Equation Models with Ordinal Variables," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1046-1068, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:75:y:2005:i:1:p:49-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.