IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Prediction of Euclidean distances with discrete and continuous outcomes

Listed author(s):
  • Mortier, F.
  • Robin, S.
  • Lassalvy, S.
  • Baril, C.P.
  • Bar-Hen, A.
Registered author(s):

    The objective of this paper is first to predict generalized Euclidean distances in the context of discrete and quantitative variables and then to derive their statistical properties. We first consider the simultaneous modelling of discrete and continuous random variables with covariates and obtain the likelihood. We derive an important property useful for its practical maximization. We then study the prediction of any Euclidean distances and its statistical proprieties, especially for the Mahalanobis distance. The quality of distance estimation is analyzed through simulations. This results are applied to our motivating example: the official distinction procedure of rapeseed varieties.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 8 (September)
    Pages: 1799-1814

    in new window

    Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1799-1814
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Barhen, A. & Daudin, J. J., 1995. "Generalization of the Mahalanobis Distance in the Mixed Case," Journal of Multivariate Analysis, Elsevier, vol. 53(2), pages 332-342, May.
    2. Wai-Yin Poon & Sik-Yum Lee, 1987. "Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 409-430, September.
    3. Edward J. Bedrick & Jodi Lapidus & Joseph F. Powell, 2000. "Estimating the Mahalanobis Distance from Mixed Continuous and Discrete Data," Biometrics, The International Biometric Society, vol. 56(2), pages 394-401, June.
    4. de Leon, A. R. & Carrière, K. C., 2005. "A generalized Mahalanobis distance for mixed data," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 174-185, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1799-1814. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.