IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v45y2004i3p563-576.html

Regularization of the location model in discrimination with mixed discrete and continuous variables

Author

Listed:
  • Merbouha, A.
  • Mkhadri, A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Merbouha, A. & Mkhadri, A., 2004. "Regularization of the location model in discrimination with mixed discrete and continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 563-576, April.
  • Handle: RePEc:eee:csdana:v:45:y:2004:i:3:p:563-576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00067-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bernhard Flury & Martin Schmid & A. Narayanan, 1994. "Error rates in quadratic discrimination with constraints on the covariance matrices," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 101-120, March.
    2. Mkhadri, A. & Celeux, G. & Nasroallah, A., 1997. "Regularization in discriminant analysis: an overview," Computational Statistics & Data Analysis, Elsevier, vol. 23(3), pages 403-423, January.
    3. Barhen, A. & Daudin, J. J., 1995. "Generalization of the Mahalanobis Distance in the Mixed Case," Journal of Multivariate Analysis, Elsevier, vol. 53(2), pages 332-342, May.
    4. W. Krzanowski, 1993. "The location model for mixtures of categorical and continuous variables," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 25-49, January.
    5. Edward J. Bedrick & Jodi Lapidus & Joseph F. Powell, 2000. "Estimating the Mahalanobis Distance from Mixed Continuous and Discrete Data," Biometrics, The International Biometric Society, vol. 56(2), pages 394-401, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan Browne & Paul McNicholas, 2014. "Estimating common principal components in high dimensions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 217-226, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Tsung-Chi & Biswas, Atanu, 2008. "Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2042-2065, January.
    2. Alban Mbina Mbina & Guy Martial Nkiet & Fulgence Eyi Obiang, 2019. "Variable selection in discriminant analysis for mixed continuous-binary variables and several groups," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 773-795, September.
    3. de Leon, A. R. & Carrière, K. C., 2005. "A generalized Mahalanobis distance for mixed data," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 174-185, January.
    4. Mortier, F. & Robin, S. & Lassalvy, S. & Baril, C.P. & Bar-Hen, A., 2006. "Prediction of Euclidean distances with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1799-1814, September.
    5. de Leon, A.R., 2005. "Pairwise likelihood approach to grouped continuous model and its extension," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 49-57, November.
    6. A. R. de Leon & A. Soo & T. Williamson, 2011. "Classification with discrete and continuous variables via general mixed-data models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 1021-1032, February.
    7. Layal Christine Lettry, 2023. "Clustering the Swiss Pension Register," FSES Working Papers 529, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Chaubert, F. & Mortier, F. & Saint André, L., 2008. "Multivariate dynamic model for ordinal outcomes," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1717-1732, September.
    9. Nor Mahat & W.J. Krzanowski & A. Hernandez, 2009. "Strategies for Non-Parametric Smoothing of the Location Model in Mixed-Variable Discriminant Analysis," Modern Applied Science, Canadian Center of Science and Education, vol. 3(1), pages 151-151, January.
    10. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    11. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    12. Chi-Ying Leung, 2001. "Error rates in classification consisting of discrete and continuous variables in the presence of covariates," Statistical Papers, Springer, vol. 42(2), pages 265-273, April.
    13. Bittmann, Thomas & Loy, Jens-Peter & Anders, Sven, 2020. "Product differentiation and cost pass-through: industry-wide versus firm-specific cost shocks," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(04), January.
    14. Sudha Bishnoi & Nadhir Al-Ansari & Mujahid Khan & Salim Heddam & Anurag Malik, 2022. "Classification of Cotton Genotypes with Mixed Continuous and Categorical Variables: Application of Machine Learning Models," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    15. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    16. Leung, Chi-Ying, 2003. "The effect of across-location heteroscedasticity on the classification of mixed categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 369-386, February.
    17. de Leon, A.R. & Zhu, Y., 2008. "ANOVA extensions for mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2218-2227, January.
    18. Daudin, J. J. & Bar-Hen, A., 1999. "Selection in discriminant analysis with continuous and discrete variables," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 161-175, December.
    19. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    20. Colin O. Wu & Gang Zheng & Minjung Kwak, 2013. "A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples," Biometrics, The International Biometric Society, vol. 69(2), pages 417-426, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:45:y:2004:i:3:p:563-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.