IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v79y2014i4p569-584.html
   My bibliography  Save this article

Testing for Measurement Invariance with Respect to an Ordinal Variable

Author

Listed:
  • Edgar Merkle
  • Jinyan Fan
  • Achim Zeileis

Abstract

Researchers are often interested in testing for measurement invariance with respect to an ordinal auxiliary variable such as age group, income class, or school grade. In a factor-analytic context, these tests are traditionally carried out via a likelihood ratio test statistic comparing a model where parameters differ across groups to a model where parameters are equal across groups. This test neglects the fact that the auxiliary variable is ordinal, and it is also known to be overly sensitive at large sample sizes. In this paper, we propose test statistics that explicitly account for the ordinality of the auxiliary variable, resulting in higher power against “monotonic” violations of measurement invariance and lower power against “non-monotonic” ones. The statistics are derived from a family of tests based on stochastic processes that have recently received attention in the psychometric literature. The statistics are illustrated via an application involving real data, and their performance is studied via simulation. Copyright The Psychometric Society 2014

Suggested Citation

  • Edgar Merkle & Jinyan Fan & Achim Zeileis, 2014. "Testing for Measurement Invariance with Respect to an Ordinal Variable," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 569-584, October.
  • Handle: RePEc:spr:psycho:v:79:y:2014:i:4:p:569-584
    DOI: 10.1007/s11336-013-9376-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9376-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9376-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
    2. Torsten Hothorn & Achim Zeileis, 2008. "Generalized Maximally Selected Statistics," Biometrics, The International Biometric Society, vol. 64(4), pages 1263-1269, December.
    3. Zeileis, Achim, 2006. "Object-oriented Computation of Sandwich Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i09).
    4. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    5. Albert Satorra & Peter Bentler, 2001. "A scaled difference chi-square test statistic for moment structure analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 507-514, December.
    6. Carolin Strobl & Julia Kopf & Achim Zeileis, 2011. "A new method for detecting differential item functioning in the Rasch model," Working Papers 2011-01, Faculty of Economics and Statistics, Universität Innsbruck.
    7. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    8. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    9. Conor Dolan & Han Maas, 1998. "Fitting multivariage normal finite mixtures subject to structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 227-253, September.
    10. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    11. Albert Satorra, 1989. "Alternative test criteria in covariance structure analysis: A unified approach," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 131-151, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    2. Ting Wang & Edgar C. Merkle & Achim Zeileis, 2013. "Score-Based Tests of Measurement Invariance: Use in Practice," Working Papers 2013-33, Faculty of Economics and Statistics, Universität Innsbruck.
    3. Gutiérrez-Vargas, Álvaro A. & Meulders, Michel & Vandebroek, Martina, 2023. "Modeling preference heterogeneity using model-based decision trees," Journal of choice modelling, Elsevier, vol. 46(C).
    4. Ting Wang & Benjamin Graves & Yves Rosseel & Edgar C. Merkle, 2022. "Computation and application of generalized linear mixed model derivatives using lme4," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1173-1193, September.
    5. Jones, Payton J. & Mair, Patrick & Simon, Thorsten & Zeileis, Achim, 2019. "Network Model Trees," OSF Preprints ha4cw, Center for Open Science.
    6. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    7. K. B. S. Huth & L. J. Waldorp & J. Luigjes & A. E. Goudriaan & R. J. Holst & M. Marsman, 2022. "A Note on the Structural Change Test in Highly Parameterized Psychometric Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1064-1080, September.
    8. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    2. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
    3. Ting Wang & Edgar C. Merkle & Achim Zeileis, 2013. "Score-Based Tests of Measurement Invariance: Use in Practice," Working Papers 2013-33, Faculty of Economics and Statistics, Universität Innsbruck.
    4. K. B. S. Huth & L. J. Waldorp & J. Luigjes & A. E. Goudriaan & R. J. Holst & M. Marsman, 2022. "A Note on the Structural Change Test in Highly Parameterized Psychometric Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1064-1080, September.
    5. Ting Wang & Benjamin Graves & Yves Rosseel & Edgar C. Merkle, 2022. "Computation and application of generalized linear mixed model derivatives using lme4," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1173-1193, September.
    6. Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2016. "Score-Based Tests of Differential Item Functioning in the Two-Parameter Model," Working Papers 2016-05, Faculty of Economics and Statistics, Universität Innsbruck.
    7. Yang, Yang & Liu, Qing & Chang, Chia-Hsun, 2023. "China-Europe freight transportation under the first wave of COVID-19 pandemic and government restriction measures," Research in Transportation Economics, Elsevier, vol. 97(C).
    8. Edgar C. Merkle & Achim Zeileis, 2011. "Generalized Measurement Invariance Tests with Application to Factor Analysis," Working Papers 2011-09, Faculty of Economics and Statistics, Universität Innsbruck.
    9. Carolin Strobl & Julia Kopf & Achim Zeileis, 2015. "Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 289-316, June.
    10. Sai-fu Fung & Esther Oi-wah Chow & Chau-kiu Cheung, 2020. "Development and Evaluation of the Psychometric Properties of a Brief Wisdom Development Scale," IJERPH, MDPI, vol. 17(8), pages 1-14, April.
    11. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    12. Jorge Sinval & M. Joseph Sirgy & Dong-Jin Lee & João Marôco, 2020. "The Quality of Work Life Scale: Validity Evidence from Brazil and Portugal," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 15(5), pages 1323-1351, November.
    13. Erdogan, Murside Rabia & Camgoz, Selin Metin & Karan, Mehmet Baha & Berument, M. Hakan, 2022. "The switching behavior of large-scale electricity consumers in The Turkish electricity retail market," Energy Policy, Elsevier, vol. 160(C).
    14. Eisenbeiss, Maik & Blechschmidt, Boris & Backhaus, Klaus & Freund, Philipp Alexander, 2012. "“The (Real) World Is Not Enough:” Motivational Drivers and User Behavior in Virtual Worlds," Journal of Interactive Marketing, Elsevier, vol. 26(1), pages 4-20.
    15. Zeileis, Achim & Koenker, Roger, 2008. "Econometrics in R: Past, Present, and Future," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i01).
    16. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    17. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    18. Sandip Sinharay & Peter W. van Rijn, 2020. "Assessing Fit of the Lognormal Model for Response Times," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 534-568, October.
    19. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    20. repec:jss:jstsof:27:i01 is not listed on IDEAS
    21. Sebastián Fierro-Suero & Bartolomé J. Almagro & Pedro Sáenz-López & José Carmona-Márquez, 2020. "Perceived Novelty Support and Psychological Needs Satisfaction in Physical Education," IJERPH, MDPI, vol. 17(11), pages 1-14, June.

    More about this item

    Keywords

    measurement invariance; stochastic process; factor analysis; ordinal data;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:79:y:2014:i:4:p:569-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.