IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p627-d800894.html
   My bibliography  Save this article

Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing

Author

Listed:
  • Yiting Zuo

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Jie Cheng

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Meichen Fu

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Land Consolidation and Land Rehabilitation, Ministry of Natural Resources of the People’s Republic of China, Beijing 100035, China)

Abstract

China has adopted policies, such as the Grain for Green program (GFGP) and China’s Western Development Strategy, to maintain ecosystem sustainability and the rational use of land resources based on economic development. Existing studies have revealed the impact of these policies on land use and land cover change (LUCC). However, more research is needed to identify what would happen if the original trajectory of land use change were to continue unaffected by policy. In this research, we employed the future land use (FLUS) model to simulate land use changes in Chongqing under the natural scenario in 2020, assuming the existence of policy and natural contexts. The relative contribution conceptual model (RCCM) estimated the contribution of policies to LUCC, assessed the characteristics of LUCC in both situations using a complex network model, and analyzed the policies affecting LUCC. The findings revealed that cropland was the key land use type in both contexts, and the stability of the land use system in the natural context was greater than in the policy context. This research contributes to new research ideas for analyzing land use change and comprehending the role of policy execution in land use change.

Suggested Citation

  • Yiting Zuo & Jie Cheng & Meichen Fu, 2022. "Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing," Land, MDPI, vol. 11(5), pages 1-27, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:627-:d:800894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Min & Wang, Jinman & Feng, Yu, 2019. "Temporal and spatial change of land use in a large-scale opencast coal mine area: A complex network approach," Land Use Policy, Elsevier, vol. 86(C), pages 375-386.
    2. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    3. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    4. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    5. Hongfei Zhao & Hongming He & Jingjing Wang & Chunyu Bai & Chuangjuan Zhang, 2018. "Vegetation Restoration and Its Environmental Effects on the Loess Plateau," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    6. Feng, Dingrao & Bao, Wenkai & Yang, Yuanyuan & Fu, Meichen, 2021. "How do government policies promote greening? Evidence from China," Land Use Policy, Elsevier, vol. 104(C).
    7. Shixiong Cao & Guosheng Wang & Li Chen, 2010. "Questionable value of planting thirsty trees in dry regions," Nature, Nature, vol. 465(7294), pages 31-31, May.
    8. repec:oup:erevae:v:44:y:2017:i:4:p:567-589. is not listed on IDEAS
    9. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    10. Xia Li & Guangzhao Chen & Xiaoping Liu & Xun Liang & Shaojian Wang & Yimin Chen & Fengsong Pei & Xiaocong Xu, 2017. "A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(5), pages 1040-1059, September.
    11. Ying Wang & Xiangmei Li & Jiangfeng Li & Zhengdong Huang & Renbin Xiao, 2018. "Impact of Rapid Urbanization on Vulnerability of Land System from Complex Networks View: A Methodological Approach," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    12. Emil Erjavec & Marko Lovec, 2017. "Research of European Union's Common Agricultural Policy: disciplinary boundaries and beyond," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(4), pages 732-754.
    13. Rui Zhou & Hao Zhang & Xin-Yue Ye & Xin-Jun Wang & Hai-Long Su, 2016. "The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    14. Alex S. Gardner & Geir Moholdt & Bert Wouters & Gabriel J. Wolken & David O. Burgess & Martin J. Sharp & J. Graham Cogley & Carsten Braun & Claude Labine, 2011. "Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago," Nature, Nature, vol. 473(7347), pages 357-360, May.
    15. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    16. Jaya Khanna & David Medvigy & Stephan Fueglistaler & Robert Walko, 2017. "Regional dry-season climate changes due to three decades of Amazonian deforestation," Nature Climate Change, Nature, vol. 7(3), pages 200-204, March.
    17. Xu, Hongtao & Song, Youcheng & Tian, Yi, 2022. "Simulation of land-use pattern evolution in hilly mountainous areas of North China: A case study in Jincheng," Land Use Policy, Elsevier, vol. 112(C).
    18. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoyue Wang & Tingzhen Li & Xianhua Guo & Lilin Xia & Chendong Lu & Chunbo Wang, 2022. "Plus-InVEST Study of the Chengdu-Chongqing Urban Agglomeration’s Land-Use Change and Carbon Storage," Land, MDPI, vol. 11(10), pages 1-19, September.
    2. Qikang Zhong & Zhe Li & Yujing He, 2023. "Coupling Evaluation and Spatial–Temporal Evolution of Land Ecosystem Services and Economic–Social Development in a City Group: The Case Study of the Chengdu–Chongqing City Group," IJERPH, MDPI, vol. 20(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    2. Ming Zhang & Xiaojie Liu & Dan Yan, 2023. "Land Use Conflicts Assessment in Xiamen, China under Multiple Scenarios," Land, MDPI, vol. 12(2), pages 1-16, February.
    3. Yanan Li & Linghua Duo & Ming Zhang & Zhenhua Wu & Yanjun Guan, 2021. "Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China," Land, MDPI, vol. 10(10), pages 1-19, October.
    4. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    5. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    6. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    7. Xiaoyu Niu & Yunfeng Hu & Zhongying Lei & Huimin Yan & Junzhi Ye & Hao Wang, 2022. "Temporal and Spatial Evolution Characteristics and Its Driving Mechanism of Land Use/Cover in Vietnam from 2000 to 2020," Land, MDPI, vol. 11(6), pages 1-19, June.
    8. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    9. Yiming Wang & Yunfeng Hu & Xiaoyu Niu & Huimin Yan & Lin Zhen, 2022. "Land Use/Cover Change and Its Driving Mechanism in Thailand from 2000 to 2020," Land, MDPI, vol. 11(12), pages 1-22, December.
    10. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    11. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    12. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    13. Ge Shi & Nan Jiang & Lianqiu Yao, 2018. "Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    14. Shilei Wang & Yanbo Qu & Weiying Zhao & Mei Guan & Zongli Ping, 2022. "Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation," Land, MDPI, vol. 11(4), pages 1-26, March.
    15. Mustafa, Ahmed & Cools, Mario & Saadi, Ismaïl & Teller, Jacques, 2017. "Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)," Land Use Policy, Elsevier, vol. 69(C), pages 529-540.
    16. Rui Zhou & Hao Zhang & Xin-Yue Ye & Xin-Jun Wang & Hai-Long Su, 2016. "The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    17. Yongyu Zhao & Alimujiang Kasimu & Hongwu Liang & Rukeya Reheman, 2022. "Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    18. Shuqing Wang & Xinqi Zheng, 2023. "Dominant transition probability: combining CA-Markov model to simulate land use change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6829-6847, July.
    19. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    20. Fandi Meng & Zhi Zhou & Pengtao Zhang, 2023. "Multi-Objective Optimization of Land Use in the Beijing–Tianjin–Hebei Region of China Based on the GMOP-PLUS Coupling Model," Sustainability, MDPI, vol. 15(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:627-:d:800894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.