IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i8p1651-d1725711.html
   My bibliography  Save this article

Analysis of Carbon Storage Changes in the Chengdu–Chongqing Region Based on the PLUS-InVEST-MGWR Model

Author

Listed:
  • Kuiyuan Xu

    (College of Resource, Sichuan Agricultural University, Chengdu 611130, China)

  • Ruhan Li

    (College of Resource, Sichuan Agricultural University, Chengdu 611130, China)

  • Mengnan Liu

    (College of Resource, Sichuan Agricultural University, Chengdu 611130, China)

  • Yajie Cao

    (College of Resource, Sichuan Agricultural University, Chengdu 611130, China)

  • Jinwen Yang

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Yali Wei

    (College of Resource, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

Urbanization-induced ecological problems have affected China’s urban agglomerations since the beginning of rapid economic growth. The InVEST model can be used to study how land use changes affect carbon storage, while land simulation models help project future land use trends and assess the impact of policies on land use, thereby predicting future carbon storage. This study constructs a PLUS-InVEST-MGWR model, corrects carbon storage values in ArcGIS, and thereby analyzes its heterogeneity by MGWR. The economic value of carbon storage is calculated as well. The main findings are as follows: (1) The downward trend of carbon storage in the Chengdu–Chongqing region will continue but slow down to some extent, and only the ecological security scenario can prevent it. (2) In 2015, China’s social cost of carbon (SCC) was CNY 60.83 per ton, with a discount rate of 6.468%, while the economic value of carbon storage (EVCS) in the Chengdu–Chongqing region was CNY 289.516 × 10 9 . (3) Spatial correction of carbon storage is crucial for enhancing the goodness-of-fit and result accuracy of the MGWR model, as the absence of such correction would significantly degrade its performance. The revised InVEST model enables rapid quantification of carbon storage’s spatial heterogeneity.

Suggested Citation

  • Kuiyuan Xu & Ruhan Li & Mengnan Liu & Yajie Cao & Jinwen Yang & Yali Wei, 2025. "Analysis of Carbon Storage Changes in the Chengdu–Chongqing Region Based on the PLUS-InVEST-MGWR Model," Land, MDPI, vol. 14(8), pages 1-27, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1651-:d:1725711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/8/1651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/8/1651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. van Vliet, Jasper & Bregt, Arnold K. & Hagen-Zanker, Alex, 2011. "Revisiting Kappa to account for change in the accuracy assessment of land-use change models," Ecological Modelling, Elsevier, vol. 222(8), pages 1367-1375.
    3. Yang, Yuanyuan & Yang, Mingying & Zhao, Boxuan & Lu, Ziwen & Sun, Xiao & Zhang, Zhengfeng, 2025. "Spatially explicit carbon emissions from land use change: Dynamics and scenario simulation in the Beijing-Tianjin-Hebei urban agglomeration," Land Use Policy, Elsevier, vol. 150(C).
    4. Chris Lloyd & Ian Shuttleworth, 2005. "Analysing Commuting Using Local Regression Techniques: Scale, Sensitivity, and Geographical Patterning," Environment and Planning A, , vol. 37(1), pages 81-103, January.
    5. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    6. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    7. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    8. Gong, Jianzhou & Hu, Zhiren & Chen, Wenli & Liu, Yansui & Wang, Jieyong, 2018. "Urban expansion dynamics and modes in metropolitan Guangzhou, China," Land Use Policy, Elsevier, vol. 72(C), pages 100-109.
    9. Yali Wei & Ying Li & Siying Wang & Junyi Wang & Yu Zhu, 2023. "Research on the Spatial Expansion Characteristics and Industrial and Policy Driving Forces of Chengdu–Chongqing Urban Agglomeration Based on NPP-VIIRS Night Light Remote Sensing Data," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    10. Cairns, George & Goodwin, Paul & Wright, George, 2016. "A decision-analysis-based framework for analysing stakeholder behaviour in scenario planning," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1050-1062.
    11. Ruei-Yuan Wang & Huina Cai & Lingkang Chen & Taohui Li, 2023. "Spatiotemporal Evolution and Multi-Scenario Prediction of Carbon Storage in the GBA Based on PLUS–InVEST Models," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    12. Yongxia Ding & Shouzhang Peng, 2020. "Spatiotemporal Trends and Attribution of Drought across China from 1901–2100," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    13. Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    2. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    3. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    4. Yang Chen & Majid Amani-Beni & Laleh Dehghanifarsani, 2025. "Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications," Land, MDPI, vol. 14(9), pages 1-27, September.
    5. Chen, Chengjing & Liu, Yihua, 2021. "Spatiotemporal changes of ecosystem services value by incorporating planning policies: A case of the Pearl River Delta, China," Ecological Modelling, Elsevier, vol. 461(C).
    6. Faisal Mumtaz & Yu Tao & Waqar Ahmed Bashir & Mariam Kareem & Wang Gengke & Lingling Li & Barjeece Bashir, 2020. "Transition Of Lulc And Future Predictions By Using Ca-Markov Chain Model (A Case Study Of Metropolitan City Lahore, Pakistan)," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(2), pages 146-151, October.
    7. Shuqing Wang & Xinqi Zheng, 2023. "Dominant transition probability: combining CA-Markov model to simulate land use change," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6829-6847, July.
    8. Yiting Zuo & Jie Cheng & Meichen Fu, 2022. "Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A Case Study in Chongqing," Land, MDPI, vol. 11(5), pages 1-27, April.
    9. Mohammad Reza Azimi Sardari & Ommolbanin Bazrafshan & Thomas Panagopoulos & Elham Rafiei Sardooi, 2019. "Modeling the Impact of Climate Change and Land Use Change Scenarios on Soil Erosion at the Minab Dam Watershed," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    10. Wang, Liye & Zhang, Siyu & Tang, Lanping & Lu, Yanchi & Liu, Yanfang & Liu, Yaolin, 2022. "Optimizing distribution of urban land on the basis of urban land use intensity at prefectural city scale in mainland China," Land Use Policy, Elsevier, vol. 115(C).
    11. Wenqiang Zhou & Jinlong Wang & Yu Han & Ling Yang & Huafei Que & Rong Wang, 2023. "Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    12. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    13. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    14. Xiji Jiang & Jiaxin Sun & Tianzi Zhang & Qian Li & Yan Ma & Wen Qu & Dan Ye & Zhendong Lei, 2025. "Defining Rural Types Nearby Large Cities from the Perspective of Urban–Rural Integration: A Case Study of Xi’an Metropolitan Area, China," Land, MDPI, vol. 14(3), pages 1-23, March.
    15. Jiaqi Kang & Linlin Zhang & Qingyan Meng & Hantian Wu & Junyan Hou & Jing Pan & Jiahao Wu, 2025. "Land Use and Carbon Storage Evolution Under Multiple Scenarios: A Spatiotemporal Analysis of Beijing Using the PLUS-InVEST Model," Sustainability, MDPI, vol. 17(4), pages 1-21, February.
    16. K. Prakash & R. Jegankumar & R. S. Libina, 2023. "Modelling differential urban growth dynamics for growth decentralisation: a study on Tiruchirappalli metropolitan and sub-tier towns, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(4), pages 1191-1221, December.
    17. Ding, Helen & Nunes, Paulo A.L.D. & Teelucksingh, Sonja S., 2010. "European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts," Sustainable Development Papers 59397, Fondazione Eni Enrico Mattei (FEEM).
    18. Chen, Yuangong & Chen, Wenli & Gong, Jianzhou & Yuan, Haiwei, 2023. "Uncommonly known change characteristics of land use pattern in Guangdong Province–Hong Kong–Macao, China: Space time pattern, terrain gradient effects and policy implication," Land Use Policy, Elsevier, vol. 125(C).
    19. repec:rre:publsh:v:37:y:2007:i:3:p:303-43 is not listed on IDEAS
    20. Guzman, Luis A. & Escobar, Francisco & Peña, Javier & Cardona, Rafael, 2020. "A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region," Land Use Policy, Elsevier, vol. 92(C).
    21. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:8:p:1651-:d:1725711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.