IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6780d10.1038_35009076.html
   My bibliography  Save this article

Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature

Author

Listed:
  • Christian P. Giardina

    (University of Hawaii at Manoa)

  • Michael G. Ryan

    (Rocky Mountain Research Station
    Graduate Degree Program in Ecology, Colorado State University)

Abstract

It has been suggested that increases in temperature can accelerate the decomposition of organic carbon contained in forest mineral soil (Cs), and, therefore, that global warming should increase the release of soil organic carbon to the atmosphere1,2,3,4,5,6. These predictions assume, however, that decay constants can be accurately derived from short-term laboratory incubations of soil or that in situ incubations of fresh litter accurately represent the temperature sensitivity of Cs decomposition. But our limited understanding of the biophysical factors that control Cs decomposition rates, and observations of only minor increases in Cs decomposition rate with temperature in longer-term forest soil heating experiments7,8,9,10,11,12 and in latitudinal comparisons of Cs decomposition rates13,14,15 bring these predictions into question. Here we have compiled Cs decomposition data from 82 sites on five continents. We found that Cs decomposition rates were remarkably constant across a global-scale gradient in mean annual temperature. These data suggest that Cs decomposition rates for forest soils are not controlled by temperature limitations to microbial activity, and that increased temperature alone will not stimulate the decomposition of forest-derived carbon in mineral soil.

Suggested Citation

  • Christian P. Giardina & Michael G. Ryan, 2000. "Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature," Nature, Nature, vol. 404(6780), pages 858-861, April.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6780:d:10.1038_35009076
    DOI: 10.1038/35009076
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35009076
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35009076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6780:d:10.1038_35009076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.