IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v56y2019icp181-191.html
   My bibliography  Save this article

Mitigating the risk of market power abuse in electricity sector restructuring: Evidence from Indonesia

Author

Listed:
  • Hakam, Dzikri Firmansyah

Abstract

This research considers the optimal configuration of successor generation companies in electricity market restructuring. The purpose of the study is to analyse the strategic behaviour of generating firms and optimise the electricity market structure under a generation constraint, transmission congestion, and DC load flow. The models applied here are perfect competition and Cournot competition applied to the Indonesia power system with the Residual Supply Index (RSI) as a tool for the risk of market power abuse. The key finding is that the characteristics of a power system, subject to generation and transmission constraints, strongly influence the optimal market structure.

Suggested Citation

  • Hakam, Dzikri Firmansyah, 2019. "Mitigating the risk of market power abuse in electricity sector restructuring: Evidence from Indonesia," Utilities Policy, Elsevier, vol. 56(C), pages 181-191.
  • Handle: RePEc:eee:juipol:v:56:y:2019:i:c:p:181-191
    DOI: 10.1016/j.jup.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178718302364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berry, Carolyn A. & Hobbs, Benjamin F. & Meroney, William A. & O'Neill, Richard P. & StewartJr, William R., 1999. "Understanding how market power can arise in network competition: a game theoretic approach," Utilities Policy, Elsevier, vol. 8(3), pages 139-158, September.
    2. Willems, Bert & Rumiantseva, Ina & Weigt, Hannes, 2009. "Cournot versus Supply Functions: What does the data tell us?," Energy Economics, Elsevier, vol. 31(1), pages 38-47, January.
    3. Pollitt, Michael, 2008. "Electricity reform in Argentina: Lessons for developing countries," Energy Economics, Elsevier, vol. 30(4), pages 1536-1567, July.
    4. Newbery, D., 2008. "Predicting market power in wholesale electricity markets," Cambridge Working Papers in Economics 0837, Faculty of Economics, University of Cambridge.
    5. David M. Newbery, 1998. "Competition, Contracts, and Entry in the Electricity Spot Market," RAND Journal of Economics, The RAND Corporation, vol. 29(4), pages 726-749, Winter.
    6. M. Pollitt, 2004. "Electricity reform in Chile. Lessons for developing countries," Competition and Regulation in Network Industries, Intersentia, vol. 5(3), pages 221-263, September.
    7. Frank A. Wolak, 2014. "Regulating Competition in Wholesale Electricity Supply," NBER Chapters, in: Economic Regulation and Its Reform: What Have We Learned?, pages 195-289, National Bureau of Economic Research, Inc.
    8. Green, Richard J, 1996. "Increasing Competition in the British Electricity Spot Market," Journal of Industrial Economics, Wiley Blackwell, vol. 44(2), pages 205-216, June.
    9. Catherine D. Wolfram, 1999. "Measuring Duopoly Power in the British Electricity Spot Market," American Economic Review, American Economic Association, vol. 89(4), pages 805-826, September.
    10. Diaconu, Oana & Oprescu, Gheorghe & Pittman, Russell, 2009. "Electricity reform in Romania," Utilities Policy, Elsevier, vol. 17(1), pages 114-124, March.
    11. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    12. Dzikri Firmansyah Hakam, 2018. "Market Power Modelling in Electricity Market: A Critical Review," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 347-356.
    13. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    14. M. Soledad Arellano, 2003. "Diagnosing and Mitigating Market Power in Chile's Electricity Industry," Working Papers EP27, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
    16. Nancy L. Rose, 2014. "Economic Regulation and Its Reform: What Have We Learned?," NBER Books, National Bureau of Economic Research, Inc, number rose05-1, January-J.
    17. Swinand, Gregory & Scully, Derek & Ffoulkes, Stuart & Kessler, Brian, 2010. "Modeling EU Electricity Market Competition Using the Residual Supply Index," The Electricity Journal, Elsevier, vol. 23(9), pages 41-50, November.
    18. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    19. David M. Newbery & Michael G. Pollitt, 1997. "The Restructuring and Privatisation of Britain's CEGB—Was It Worth It?," Journal of Industrial Economics, Wiley Blackwell, vol. 45(3), pages 269-303, September.
    20. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    21. Giulietti, Monica & Grossi, Luigi & Waterson, Michael, 2010. "Price transmission in the UK electricity market: Was NETA beneficial?," Energy Economics, Elsevier, vol. 32(5), pages 1165-1174, September.
    22. Dzikri Firmansyah Hakam & Ayodele O. Asekomeh, 2018. "Gas Monetisation Intricacies: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 174-181.
    23. Arellano, M.S., 2003. "Diagnosing and Mitigating Market Power in Chile’s Electricity Industry," Cambridge Working Papers in Economics 0327, Faculty of Economics, University of Cambridge.
    24. Dzikri Firmansyah Hakam, 2018. "Nodal Pricing: The Theory and Evidence of Indonesia Power System," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 135-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dzikri Firmansyah Hakam & Sudarso Kaderi Wiyono & Nanang Hariyanto, 2020. "Competition in Power Generation: Ex-ante Analysis of Indonesia’s Electricity Market," Energies, MDPI, vol. 13(24), pages 1-20, December.
    2. Satria Putra Kanugrahan & Dzikri Firmansyah Hakam & Herry Nugraha, 2022. "Techno-Economic Analysis of Indonesia Power Generation Expansion to Achieve Economic Sustainability and Net Zero Carbon 2050," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    3. Handrea Bernando Tambunan & Dzikri Firmansyah Hakam & Iswan Prahastono & Anita Pharmatrisanti & Andreas Putro Purnomoadi & Siti Aisyah & Yonny Wicaksono & I Gede Ryan Sandy, 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System," Energies, MDPI, vol. 13(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dzikri Firmansyah Hakam, 2018. "Market Power Modelling in Electricity Market: A Critical Review," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 347-356.
    2. Dzikri Firmansyah Hakam & Sudarso Kaderi Wiyono & Nanang Hariyanto, 2020. "Competition in Power Generation: Ex-ante Analysis of Indonesia’s Electricity Market," Energies, MDPI, vol. 13(24), pages 1-20, December.
    3. SMEERS, Yves, 2005. "How well can one measure market power in restructured electricity systems ?," LIDAM Discussion Papers CORE 2005050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Crawford, Gregory S. & Crespo, Joseph & Tauchen, Helen, 2007. "Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1233-1268, December.
    5. Erdogdu, Erkan, 2010. "Electricity Market Reform: Lessons for developing countries," MPRA Paper 27317, University Library of Munich, Germany.
    6. Paizs, László & Mészáros, Mátyás Tamás, 2003. "Piachatalmi problémák modellezése a dereguláció utáni magyar áramtermelő piacon [Modelling problems of market power on the Hungarian electricity-generation market after deregulation]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 735-764.
    7. Weigt, H. & Willems, Bert, 2011. "The Effect of Divestitures in the German Electricity Market," Other publications TiSEM 7bbea5b0-7489-416f-8767-d, Tilburg University, School of Economics and Management.
    8. Rajnish Kamat & Shmuel Oren, 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power," Journal of Regulatory Economics, Springer, vol. 25(1), pages 5-37, January.
    9. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    10. Erdogdu, Erkan, 2013. "Essays on Electricity Market Reforms: A Cross-Country Applied Approach," MPRA Paper 47139, University Library of Munich, Germany.
    11. Marino, Marianna & Parrotta, Pierpaolo & Valletta, Giacomo, 2019. "Electricity (de)regulation and innovation," Research Policy, Elsevier, vol. 48(3), pages 748-758.
    12. Pio Baake & Sebastian Schwenen & Christian von Hirschhausen, 2020. "Local Power Markets," Discussion Papers of DIW Berlin 1904, DIW Berlin, German Institute for Economic Research.
    13. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    14. Carlos Suarez, 2021. "Private management and strategic bidding behavior in electricity markets: Evidence from Colombia," IREA Working Papers 202102, University of Barcelona, Research Institute of Applied Economics, revised Jan 2021.
    15. Bolle, Friedel & Grimm, Veronika & Ockenfels, Axel & del Pozo, Xavier, 2013. "An experiment on supply function competition," European Economic Review, Elsevier, vol. 63(C), pages 170-185.
    16. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.
    17. Rangel, Luiz Fernando, 2008. "Competition policy and regulation in hydro-dominated electricity markets," Energy Policy, Elsevier, vol. 36(4), pages 1292-1302, April.
    18. Poletti, Steve, 2009. "Government procurement of peak capacity in the New Zealand electricity market," Energy Policy, Elsevier, vol. 37(9), pages 3409-3417, September.
    19. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    20. Suarez, Carlos, 2022. "Private management and strategic bidding behavior in electricity markets: Evidence from Colombia," Energy Economics, Elsevier, vol. 111(C).

    More about this item

    Keywords

    Market power; Indonesia power system; Residual supply index;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D41 - Microeconomics - - Market Structure, Pricing, and Design - - - Perfect Competition
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • D60 - Microeconomics - - Welfare Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:56:y:2019:i:c:p:181-191. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/30478 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30478 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.