IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v87y2018icp224-241.html

Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States

Author

Listed:
  • Eyer, Jonathan
  • Wichman, Casey J.

Abstract

Water withdrawals for the energy sector are the largest use of fresh water in the United States. Using an econometric model of monthly plant-level electricity generation levels between 2001 and 2012, we estimate the effect of water scarcity on the US electricity fuel mix. We find that hydroelectric generation decreases substantially in response to drought, although this baseline generation is offset primarily by natural gas, depending on the geographic region. We provide empirical evidence that drought can increase emissions of CO2 and local pollutants. We quantify the social costs of water scarcity to be $330,000 per month for each plant that experiences a one-standard deviation increase in water scarcity (2015 dollars), a relationship that persists under future projections of water scarcity.

Suggested Citation

  • Eyer, Jonathan & Wichman, Casey J., 2018. "Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 224-241.
  • Handle: RePEc:eee:jeeman:v:87:y:2018:i:c:p:224-241
    DOI: 10.1016/j.jeem.2017.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069616305617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2017.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, , vol. 32(1), pages 149-168, January.
    2. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    3. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    6. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    7. Donald H. Rosenthal & Howard K. Gruenspecht & Emily A. Moran, 1995. "Effects of Global Warming on Energy Use for Space Heating and Cooling in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    8. Anin Aroonruengsawat & Maximilian Auffhammer, 2011. "Impacts of Climate Change on Residential Electricity Consumption: Evidence from Billing Data," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 311-342, National Bureau of Economic Research, Inc.
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    10. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    11. Baxter, Lester W. & Calandri, Kevin, 1992. "Global warming and electricity demand : A study of California," Energy Policy, Elsevier, vol. 20(3), pages 233-244, March.
    12. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    13. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    14. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    15. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    16. Feeley, Thomas J. & Skone, Timothy J. & Stiegel, Gary J. & McNemar, Andrea & Nemeth, Michael & Schimmoller, Brian & Murphy, James T. & Manfredo, Lynn, 2008. "Water: A critical resource in the thermoelectric power industry," Energy, Elsevier, vol. 33(1), pages 1-11.
    17. Nicholas Z. Muller & Robert Mendelsohn, 2012. "Efficient Pollution Regulation: Getting the Prices Right: Corrigendum (Mortality Rate Update)," American Economic Review, American Economic Association, vol. 102(1), pages 613-616, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senni, Chiara Colesanti & von Jagow, Adrian, 2023. "Water risks for hydroelectricity generation," LSE Research Online Documents on Economics 119256, London School of Economics and Political Science, LSE Library.
    2. Xiaojun Yu & Russell Smyth & Yao Yao & Quanda Zhang, 2024. "Water stress and industrial firm productivity: Evidence from China," Monash Economics Working Papers 2024-20, Monash University, Department of Economics.
    3. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Colesanti Senni, Chiara & Goel, Skand & von Jagow, Adrian, 2024. "Economic and financial consequences of water risks: The case of hydropower," Ecological Economics, Elsevier, vol. 218(C).
    5. Yang, Jie & Huang, Yijing & Takeuchi, Kenji, 2022. "Does drought increase carbon emissions? Evidence from Southwestern China," Ecological Economics, Elsevier, vol. 201(C).
    6. Mathilda Eriksson & Alejandro del Valle & Alejandro de la Fuente, 2025. "Droughts worsen air quality and health by shifting power generation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Eriksson,Mathilda & del Valle,Alejandro & De La Fuente,Alejandro, 2024. "Droughts Worsen Air Quality by Shifting Power Generation in Latin America and the Caribbean," Policy Research Working Paper Series 10760, The World Bank.
    8. Dario Aversa & Nino Adamashvili & Mariantonietta Fiore & Alessia Spada, 2022. "Scoping Review (SR) via Text Data Mining on Water Scarcity and Climate Change," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    9. Muhammad Saeed Meo & Solomon Prince Nathaniel & Muhammad Murtaza Khan & Qasim Ali Nisar & Tehreem Fatima, 2023. "Does Temperature Contribute to Environment Degradation? Pakistani Experience Based on Nonlinear Bounds Testing Approach," Global Business Review, International Management Institute, vol. 24(3), pages 535-549, June.
    10. Liang, Jing & Wu, Di, 2025. "Heatwaves worsen the air pollution from energy systems: Empirical evidence from balancing authorities in the United States," Energy Economics, Elsevier, vol. 148(C).
    11. Casey J. Wichman, 2017. "Book Review: “Thirst for Power: Energy, Water, and Human Survival”," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-4, January.
    12. Ordoñez, Pablo J., 2020. "Power Plants, Air Pollution, and Health in Colombia," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304284, Agricultural and Applied Economics Association.
    13. Zohrabian, Angineh & Sanders, Kelly T., 2018. "Assessing the impact of drought on the emissions- and water-intensity of California's transitioning power sector," Energy Policy, Elsevier, vol. 123(C), pages 461-470.
    14. Araujo, Rafael, 2024. "The value of tropical forests to hydropower," Energy Economics, Elsevier, vol. 129(C).
    15. Jenny R. Frank & Tristan R. Brown & Rohit D. Bhonagiri & Ryan J. Quinn & Kirsten C. McGiver & Marie-Odile P. Fortier & Robert W. Malmsheimer & Timothy A. Volk & Thomas R. Dapp, 2023. "Assessing Indian Point’s Electricity Generation Through Renewable Energy Pathways: A Technical and Economic Analysis," Energy & Environment, , vol. 34(4), pages 989-1005, June.
    16. Doan, Bao & Vo, Duc Hong & Pham, Huy, 2023. "The net economic benefits of power plants: International evidence," Energy Policy, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    2. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    3. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    4. Moustafa Feriga & Nancy Lozano Gracia & Pieter Serneels, 2025. "The Impact of Climate Change on Work: Lessons for Developing Countries," The World Bank Research Observer, World Bank, vol. 40(1), pages 104-146.
    5. R. Jisung Park & Joshua Goodman & Michael Hurwitz & Jonathan Smith, 2020. "Heat and Learning," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 306-339, May.
    6. Yanyan Ouyang & Chuanwang Sun & Xiaonan Wei & Chuangyu Xie, 2023. "Will Temperature Changes in the Host Country Reduce the Inflow of International Direct Investment? Micro Evidence from Chinese Listed Companies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(4), pages 781-806, December.
    7. Moustafa Feriga & Nancy Lozano Gracia & Pieter Serneels, 2025. "The Impact of Climate Change on Work: Lessons for Developing Countries," The World Bank Research Observer, World Bank, vol. 40(1), pages 104-146.
    8. Yongping Sun & Xin Zou & Xunpeng Shi & Ping Zhang, 2019. "The economic impact of climate risks in China: evidence from 47-sector panel data, 2000–2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 289-308, January.
    9. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    10. Hsing-Hsiang Huang & Michael R. Moore, 2018. "Farming under Weather Risk: Adaptation, Moral Hazard, and Selection on Moral Hazard," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 77-124, National Bureau of Economic Research, Inc.
    11. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    12. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    13. Cascarano, Michele & Natoli, Filippo & Petrella, Andrea, 2025. "Entry, exit, and market structure in a changing climate," European Economic Review, Elsevier, vol. 176(C).
    14. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    15. Guimbeau, Amanda & Ji, Xinde James & Menon, Nidhiya, 2024. "Climate Shocks, Intimate Partner Violence, and the Protective Role of Climate-Resilience Projects," IZA Discussion Papers 17529, Institute of Labor Economics (IZA).
    16. Maximilian Auffhammer & Anin Aroonruengsawat, 2012. "Erratum to: Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 113(3), pages 1101-1104, August.
    17. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    18. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    19. Hongliang Zhang & Shang Xu, 2025. "Climate Change, Air Conditioning Adoption, and Household Electricity Use: Evidence from the Northwestern United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 88(9), pages 2469-2501, September.
    20. Belloc, Ignacio & Gimenez-Nadal, José Ignacio & Molina, José Alberto, 2025. "Extreme temperatures: Gender differences in well-being," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 117(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:87:y:2018:i:c:p:224-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.