IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v82y2012i2p445-461.html
   My bibliography  Save this article

Financial crises and regime-dependent dynamics

Author

Listed:
  • Huang, Weihong
  • Zheng, Huanhuan

Abstract

Generalized with the regime-dependent beliefs and regime-switching dynamics, the simple market-maker framework established by Day and Huang (1990) is capable to model all types of crises, that is, sudden crisis, disturbing crisis and smooth crisis, and to offer economic and dynamic justifications on how and why these crises appear. Moreover, the model simulations verify the salient qualitative and statistical properties commonly observed in the real financial data such as fat tails, volatility clustering, long range dependence, leverage effect and other stylized facts. Additionally, the model replicates the various chart patterns widely applied in the technical analysis.

Suggested Citation

  • Huang, Weihong & Zheng, Huanhuan, 2012. "Financial crises and regime-dependent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 445-461.
  • Handle: RePEc:eee:jeborg:v:82:y:2012:i:2:p:445-461
    DOI: 10.1016/j.jebo.2012.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268112000303
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    3. Manzan, Sebastiano & Westerhoff, Frank H., 2007. "Heterogeneous expectations, exchange rate dynamics and predictability," Journal of Economic Behavior & Organization, Elsevier, vol. 64(1), pages 111-128, September.
    4. Carl Chiarella & Mauro Gallegati & Roberto Leombruni & Antonio Palestrini, 2003. "Asset Price Dynamics among Heterogeneous Interacting Agents," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 213-223, October.
    5. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    6. Tramontana, Fabio & Westerhoff, Frank & Gardini, Laura, 2010. "On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 187-205, June.
    7. Frankel, Jeffrey A & Froot, Kenneth A, 1986. "Understanding the U.S. Dollar in the Eighties: The Expectations of Chartists and Fundamentalists," The Economic Record, The Economic Society of Australia, vol. 0(0), pages 24-38, Supplemen.
    8. Huang, Weihong & Zheng, Huanhuan & Chia, Wai-Mun, 2010. "Financial crises and interacting heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1105-1122, June.
    9. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    10. Weihong Huang & Huanhuan Zheng & Wai-Mun Chia, 2013. "Asymmetric returns, gradual bubbles and sudden crashes," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 420-437, May.
    11. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    12. Friesen, Geoffrey C. & Weller, Paul A. & Dunham, Lee M., 2009. "Price trends and patterns in technical analysis: A theoretical and empirical examination," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1089-1100, June.
    13. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    14. He, Xue-Zhong & Westerhoff, Frank H., 2005. "Commodity markets, price limiters and speculative price dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 29(9), pages 1577-1596, September.
    15. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    16. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    17. Gallegati, Mauro & Palestrini, Antonio & Rosser, J. Barkley, 2011. "The Period Of Financial Distress In Speculative Markets: Interacting Heterogeneous Agents And Financial Constraints," Macroeconomic Dynamics, Cambridge University Press, vol. 15(01), pages 60-79, February.
    18. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    19. Xue-Zhong He & Youwei Li, 2008. "Heterogeneity, convergence, and autocorrelations," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 59-79.
    20. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    21. Chiarella, Carl & He, Xue-Zhong & Huang, Weihong & Zheng, Huanhuan, 2012. "Estimating behavioural heterogeneity under regime switching," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 446-460.
    22. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    23. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    24. Shimokawa, Tetsuya & Suzuki, Kyoko & Misawa, Tadanobu, 2007. "An agent-based approach to financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 207-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmitt, Noemi & Westerhoff, Frank, 2017. "On the bimodality of the distribution of the S&P 500's distortion: Empirical evidence and theoretical explanations," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 34-53.
    2. Huang, Weihong & Chen, Zhenxi, 2014. "Modeling regional linkage of financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 99(C), pages 18-31.
    3. repec:eee:jeborg:v:137:y:2017:i:c:p:232-258 is not listed on IDEAS
    4. Tramontana, Fabio & Westerhoff, Frank & Gardini, Laura, 2013. "The bull and bear market model of Huang and Day: Some extensions and new results," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2351-2370.
    5. Schmitt, Noemi & Tuinstra, Jan & Westerhoff, Frank, 2017. "Side effects of nonlinear profit taxes in an evolutionary market entry model: Abrupt changes, coexisting attractors and hysteresis problems," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 15-38.
    6. Weihong HUANG & Wanying Wang, 2012. "Price-Volume Relations in Financial Market," Economic Growth Centre Working Paper Series 1209, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    7. Ichiro Iwasaki, 2015. "Global Financial Crisis, Ownership Change, and Corporate Governance Evolution Firm-Level Evidence from Russia," KIER Working Papers 925, Kyoto University, Institute of Economic Research.

    More about this item

    Keywords

    Financial crisis; Regime-dependent belief; Regime switching; Power-law distribution; Long-range dependence;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:82:y:2012:i:2:p:445-461. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jebo .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.