IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v28y2012i2p297-308.html
   My bibliography  Save this article

Do professional forecasters pay attention to data releases?

Author

Listed:
  • Clements, Michael P.

Abstract

We present a novel approach to assessing the attentiveness of professional forecasters to news about the macroeconomy. We find evidence that professional forecasters, taken as a group, do not always update their estimates of the current state of the economy to reflect the latest releases of revised estimates of key data.

Suggested Citation

  • Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
  • Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:297-308
    DOI: 10.1016/j.ijforecast.2011.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207011001348
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lucas, Robert E, Jr, 1973. "Some International Evidence on Output-Inflation Tradeoffs," American Economic Review, American Economic Association, vol. 63(3), pages 326-334, June.
    2. S. Boragan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 319-340, March.
    3. Bonham, Carl S & Cohen, Richard H, 2001. "To Aggregate, Pool, or Neither: Testing the Rational-Expectations Hypothesis Using Survey Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 278-291, July.
    4. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    5. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters,in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270 National Bureau of Economic Research, Inc.
    6. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    7. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    8. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    9. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    10. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    11. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    12. Michael Woodford, 2001. "Imperfect Common Knowledge and the Effects of Monetary Policy," NBER Working Papers 8673, National Bureau of Economic Research, Inc.
    13. Victor Zarnowitz & Phillip Braun, 1993. "Twenty-two Years of the NBER-ASA Quarterly Economic Outlook Surveys: Aspects and Comparisons of Forecasting Performance," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 11-94 National Bureau of Economic Research, Inc.
    14. Bartosz Mackowiak & Mirko Wiederholt, 2009. "Optimal Sticky Prices under Rational Inattention," American Economic Review, American Economic Association, vol. 99(3), pages 769-803, June.
    15. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    16. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 269-298.
    17. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    18. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    19. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    20. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    21. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    22. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    23. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sill, Keith, 2014. "Forecast disagreement in the Survey of Professional Forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Q2, pages 15-24.
    2. Pedersen, Michael, 2015. "What affects the predictions of private forecasters? The role of central bank forecasts in Chile," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1043-1055.

    More about this item

    Keywords

    Survey expectations; Data revisions; Inattention;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:297-308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.