IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v71y2021ics1042443121000081.html
   My bibliography  Save this article

Speculation and lottery-like demand in cryptocurrency markets

Author

Listed:
  • Grobys, Klaus
  • Junttila, Juha

Abstract

This is the first paper that explores lottery-like demand in cryptocurrency markets. Since recent research provides evidence that cryptocurrency returns appear to be short-memory processes, we modify Bali, Cakici and Whitelaw’s (2011) and Bali, Brown, Murray, and Tang’s (2017) MAX measure and employ a weekly forecast horizon and daily log-returns from the previous week to calculate the metric for our portfolio sorts. From an econometric point of view, this study proposes statistical tests that are robust to unknown dynamic dependency structures in the cryptocurrency data. Our results show that average raw and risk-adjusted return differences between cryptocurrencies in the lowest and highest MAX quintiles exceed 1.50% per week. These results are robust after controlling for Bitcoin risk or potential microstructure effects. Our findings are important also from a theoretical point of view because they suggest that parallel to stock markets, similar behavioral mechanisms of underlying investor behavior are present also in new virtual currency markets.

Suggested Citation

  • Grobys, Klaus & Junttila, Juha, 2021. "Speculation and lottery-like demand in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:intfin:v:71:y:2021:i:c:s1042443121000081
    DOI: 10.1016/j.intfin.2021.101289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443121000081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2021.101289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung, Weifeng & Yang, J. Jimmy, 2018. "The MAX effect: Lottery stocks with price limits and limits to arbitrage," Journal of Financial Markets, Elsevier, vol. 41(C), pages 77-91.
    2. Alkan, Ulas & Guner, Biliana, 2018. "Preferences for lottery stocks at Borsa Istanbul," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 211-223.
    3. Cretarola, Alessandra & Figà-Talamanca, Gianna, 2020. "Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics," Economics Letters, Elsevier, vol. 191(C).
    4. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    5. Daniel S. Hamermesh, 2007. "Viewpoint: Replication in economics," Canadian Journal of Economics, Canadian Economics Association, vol. 40(3), pages 715-733, August.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    8. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    9. Caporale, Guglielmo Maria & Plastun, Alex, 2019. "The day of the week effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 31(C).
    10. Asness, Cliff & Frazzini, Andrea & Gormsen, Niels Joachim & Pedersen, Lasse Heje, 2020. "Betting against correlation: Testing theories of the low-risk effect," Journal of Financial Economics, Elsevier, vol. 135(3), pages 629-652.
    11. Doina C. Chichernea & Haimanot Kassa & Steve L. Slezak, 2019. "Lottery preferences and the idiosyncratic volatility puzzle," European Financial Management, European Financial Management Association, vol. 25(3), pages 655-683, June.
    12. Grobys, Klaus & Sapkota, Niranjan, 2019. "Cryptocurrencies and momentum," Economics Letters, Elsevier, vol. 180(C), pages 6-10.
    13. Nikolay Miller & Yiming Yang & Bruce Sun & Guoyi Zhang, 2019. "Identification of technical analysis patterns with smoothing splines for bitcoin prices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2289-2297, September.
    14. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    15. Fry, John, 2018. "Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets?," Economics Letters, Elsevier, vol. 171(C), pages 225-229.
    16. Ahmed, Shaker & Grobys, Klaus & Sapkota, Niranjan, 2020. "Profitability of technical trading rules among cryptocurrencies with privacy function," Finance Research Letters, Elsevier, vol. 35(C).
    17. Liu, Weiyi & Liang, Xuan & Cui, Guowei, 2020. "Common risk factors in the returns on cryptocurrencies," Economic Modelling, Elsevier, vol. 86(C), pages 299-305.
    18. Hamermesh, Daniel S., 2007. "Replication in Economics," IZA Discussion Papers 2760, Institute of Labor Economics (IZA).
    19. Liu, Li & Bu, Ruijun & Pan, Zhiyuan & Xu, Yuhua, 2019. "Are financial returns really predictable out-of-sample?: Evidence from a new bootstrap test," Economic Modelling, Elsevier, vol. 81(C), pages 124-135.
    20. Grobys, Klaus & Ahmed, Shaker & Sapkota, Niranjan, 2020. "Technical trading rules in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 32(C).
    21. Chan, Yue-Cheong & Chui, Andy C.W., 2016. "Gambling in the Hong Kong stock market," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 204-218.
    22. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    23. Bali, Turan G. & Brown, Stephen J. & Murray, Scott & Tang, Yi, 2017. "A Lottery-Demand-Based Explanation of the Beta Anomaly," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2369-2397, December.
    24. Geuder, Julian & Kinateder, Harald & Wagner, Niklas F., 2019. "Cryptocurrencies as financial bubbles: The case of Bitcoin," Finance Research Letters, Elsevier, vol. 31(C).
    25. Markus K. Brunnermeier & Jonathan A. Parker & Christian Gollier, 2007. "Optimal Beliefs, Asset Prices, and the Preference for Skewed Returns," American Economic Review, American Economic Association, vol. 97(2), pages 159-165, May.
    26. Kristoufek, Ladislav & Vosvrda, Miloslav, 2019. "Cryptocurrencies market efficiency ranking: Not so straightforward," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    27. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    28. Baur, Dirk G. & Cahill, Daniel & Godfrey, Keith & (Frank) Liu, Zhangxin, 2019. "Bitcoin time-of-day, day-of-week and month-of-year effects in returns and trading volume," Finance Research Letters, Elsevier, vol. 31(C), pages 78-92.
    29. Kumar, Alok & Page, Jeremy K. & Spalt, Oliver G., 2016. "Gambling and Comovement," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(1), pages 85-111, February.
    30. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2020. "A three-factor pricing model for cryptocurrencies," Finance Research Letters, Elsevier, vol. 34(C).
    31. Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
    32. Huang, Dashan & Li, Jiangyuan & Wang, Liyao & Zhou, Guofu, 2020. "Time series momentum: Is it there?," Journal of Financial Economics, Elsevier, vol. 135(3), pages 774-794.
    33. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    34. Aharon, David Yechiam & Qadan, Mahmoud, 2019. "Bitcoin and the day-of-the-week effect," Finance Research Letters, Elsevier, vol. 31(C).
    35. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    36. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    37. Platanakis, Emmanouil & Sutcliffe, Charles & Urquhart, Andrew, 2018. "Optimal vs naïve diversification in cryptocurrencies," Economics Letters, Elsevier, vol. 171(C), pages 93-96.
    38. repec:bla:jfinan:v:44:y:1989:i:4:p:889-908 is not listed on IDEAS
    39. Huang, Dashan & Li, Jiangyuan & Wang, Liyao & Zhou, Guofu, 2020. "Time series momentum: Is it there?," Journal of Financial Economics, Elsevier, vol. 135(3), pages 774-794.
    40. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    41. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    42. Corbet, Shaen & Eraslan, Veysel & Lucey, Brian & Sensoy, Ahmet, 2019. "The effectiveness of technical trading rules in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 31(C), pages 32-37.
    43. Stephen Brown & Yan Lu & Sugata Ray & Melvyn Teo, 2018. "Sensation Seeking and Hedge Funds," Journal of Finance, American Finance Association, vol. 73(6), pages 2871-2914, December.
    44. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    45. Chaim, Pedro & Laurini, Márcio P., 2019. "Is Bitcoin a bubble?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 222-232.
    46. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    47. Nguyen, Hung T. & Truong, Cameron, 2018. "When are extreme daily returns not lottery? At earnings announcements!," Journal of Financial Markets, Elsevier, vol. 41(C), pages 92-116.
    48. Fan, Rui & Lee, Ji Hyung, 2019. "Predictive quantile regressions under persistence and conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(1), pages 261-280.
    49. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    50. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melisa Ozdamar & Levent Akdeniz & Ahmet Sensoy, 2021. "Lottery-like preferences and the MAX effect in the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    2. Zhao, Xiaojuan & Wang, Ye & Liu, Weiyi, 2024. "Someone like you: Lottery-like preference and the cross-section of expected returns in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    3. Lin, Mei-Chen & Lin, Yu-Ling, 2021. "Idiosyncratic skewness and cross-section of stock returns: Evidence from Taiwan," International Review of Financial Analysis, Elsevier, vol. 77(C).
    4. Tsai, Chia-Fen & Chang, Jung-Hsien & Tsai, Feng-Tse, 2021. "Lottery preferences and retail short selling," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    5. Borgards, Oliver, 2021. "Dynamic time series momentum of cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    6. Joshua Traut, 2023. "What we know about the low-risk anomaly: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(3), pages 297-324, September.
    7. Gao, Ya & Bradrania, Reza, 2024. "Property crime and lottery-related anomalies," Global Finance Journal, Elsevier, vol. 59(C).
    8. Chen, Dongxu & Wu, Ke & Zhu, Yifeng, 2022. "Stock return asymmetry in China," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    9. Zi-Mei Wang & Donald Lien, 2022. "Is maximum daily return a lottery? Evidence from monthly revenue announcements," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 545-600, August.
    10. Atilgan, Yigit & Bali, Turan G. & Demirtas, K. Ozgur & Gunaydin, A. Doruk, 2020. "Left-tail momentum: Underreaction to bad news, costly arbitrage and equity returns," Journal of Financial Economics, Elsevier, vol. 135(3), pages 725-753.
    11. Xu, Zhongxiang & Chevapatrakul, Thanaset & Li, Xiafei, 2019. "Return asymmetry and the cross section of stock returns," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 93-110.
    12. Andreas Oehler & Julian Schneider, 2022. "Gambling with lottery stocks?," Journal of Asset Management, Palgrave Macmillan, vol. 23(6), pages 477-503, October.
    13. Baars, Maren & Mohrschladt, Hannes, 2021. "An alternative behavioral explanation for the MAX effect," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 868-886.
    14. Yao, Shouyu & Wang, Chunfeng & Cui, Xin & Fang, Zhenming, 2019. "Idiosyncratic skewness, gambling preference, and cross-section of stock returns: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 464-483.
    15. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    16. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    17. Bradrania, Reza & Gao, Ya, 2024. "Lottery demand, weather and the cross-section of stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    18. Kwon, Kyung Yoon & Min, Byoung-Kyu & Sun, Chenfei, 2022. "Enhancing the profitability of lottery strategies," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 166-184.
    19. Li, Yi & Urquhart, Andrew & Wang, Pengfei & Zhang, Wei, 2021. "MAX momentum in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    20. Nguyen, Hung T. & Pham, Mia Hang, 2021. "Air pollution and behavioral biases: Evidence from stock market anomalies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).

    More about this item

    Keywords

    MAX; Lottery-like demand; Cryptocurrency; Financial technology; Gambling;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:71:y:2021:i:c:s1042443121000081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.