IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v12y2010i5p377-386.html
   My bibliography  Save this article

Comparison of various sources of uncertainty in stand-level net present value estimates

Author

Listed:
  • Holopainen, Markus
  • Mäkinen, Antti
  • Rasinmäki, Jussi
  • Hyytiäinen, Kari
  • Bayazidi, Saeed
  • Pietilä, Ilona

Abstract

The objective of this study was to compare the relative importance of various sources of uncertainties in determining the net present value of forest stands and forested property. This was achieved by performing stand-level simulations that took into account: i) input data errors (airborne laser-scanning data vs. ocular standwise field inventory data), ii) stochastic future development of timber assortment prices and iii) errors in stand-level growth projection models. The starting point of the study was a simulated forest estate comprising 40 stands of various types sufficiently represented (e.g. with respect to species composition, development class distribution, and site quality). Stochastic timber price models were formulated, employing geometric mean-reverting principles. The results showed that sources of uncertainty all had significant effects on the probability distribution of the net present value of the stand. The relative standard deviations of stand net present values averaged 8% for stochastic timber price, 29% for errors in standwise field inventory data, 26% for errors in airborne laser-scanning data and 33% for errors in growth projection models when applying a 3% discount rate. When all three sources of uncertainty were analysed simultaneously, the highest average standard deviation was 47.4%. Interestingly, errors in the growth projections and the quality of inventory data contributed more to the variation in stand net present value than fluctuation in timber price did, although this result was based on the assumption that the forestry industry maintains its competitiveness in the long run. Our modeling approach made it possible to compare various sources of uncertainty and to set confidence intervals for net present value estimates. This approach can also result in information on which sources of uncertainty are focused.

Suggested Citation

  • Holopainen, Markus & Mäkinen, Antti & Rasinmäki, Jussi & Hyytiäinen, Kari & Bayazidi, Saeed & Pietilä, Ilona, 2010. "Comparison of various sources of uncertainty in stand-level net present value estimates," Forest Policy and Economics, Elsevier, vol. 12(5), pages 377-386, June.
  • Handle: RePEc:eee:forpol:v:12:y:2010:i:5:p:377-386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389-9341(10)00025-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshimoto, Atsushi & Shoji, Isao, 1998. "Searching for an optimal rotation age for forest stand management under stochastic log prices," European Journal of Operational Research, Elsevier, vol. 105(1), pages 100-112, February.
    2. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.
    3. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    4. Margaret Insley & Kimberly Rollins, 2005. "On Solving the Multirotational Timber Harvesting Problem with Stochastic Prices: A Linear Complementarity Formulation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 735-755.
    5. Thomas A. Thomson, 1992. "Optimal Forest Rotation When Stumpage Prices Follow a Diffusion Process," Land Economics, University of Wisconsin Press, vol. 68(3), pages 329-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petr, Michal & Boerboom, Luc & Ray, Duncan & van der Veen, Anne, 2014. "An uncertainty assessment framework for forest planning adaptation to climate change," Forest Policy and Economics, Elsevier, vol. 41(C), pages 1-11.
    2. Petković, Dalibor & Shamshirband, Shahaboddin & Kamsin, Amirrudin & Lee, Malrey & Anicic, Obrad & Nikolić, Vlastimir, 2016. "Survey of the most influential parameters on the wind farm net present value (NPV) by adaptive neuro-fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1270-1278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:12:y:2010:i:5:p:377-386. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/forpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.