IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v17y2011i3p248-257.html
   My bibliography  Save this article

Further generalization of Faustmann's formula for stochastic interest rates

Author

Listed:
  • Buongiorno, Joseph
  • Zhou, Mo

Abstract

Markov decision process (MDP) models generalize Faustmann's formula by recognizing that future stand states, prices, and interest rates, are not known exactly. Buongiorno (Forest Science 47(4) 2001) presents a dynamic programming and a linear programming formulation of the MDP model with a fixed interest rate. Both formulations are generalized here to account for a stochastic interest rate. The objective function is the expected present value of returns over an infinite horizon. It gives, like Faustmann's formula, the value of the land and the eventual standing trees. The changes between stand states, prices, and interest rate, are represented by Markov chains. Faustmann's formula is a special case where the change from one state to another has 0 or 1 probability, and the interest rate is constant. The MDP model applies to any stand state, even- or uneven-aged, and the best decisions are tied uniquely to the current system state. An example shows the effects of recognizing variations in interest rate on the land expectation value, and the cost of ignoring them.

Suggested Citation

  • Buongiorno, Joseph & Zhou, Mo, 2011. "Further generalization of Faustmann's formula for stochastic interest rates," Journal of Forest Economics, Elsevier, vol. 17(3), pages 248-257, August.
  • Handle: RePEc:eee:foreco:v:17:y:2011:i:3:p:248-257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689911000171
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clarke, Harry R. & Reed, William J., 1989. "The tree-cutting problem in a stochastic environment : The case of age-dependent growth," Journal of Economic Dynamics and Control, Elsevier, vol. 13(4), pages 569-595, October.
    2. Alvarez, Luis H R & Koskela, Erkki, 2003. "On Forest Rotation under Interest Rate Variability," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 10(4), pages 489-503, August.
    3. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    4. C. Robert Taylor, 1984. "Stochastic Dynamic Duality: Theory and Empirical Applicability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 351-357.
    5. Ching-Rong Lin & Joseph Buongiorno, 1998. "Tree Diversity, Landscape Diversity, and Economics of Maple-Birch Forests: Implications of Markovian Models," Management Science, INFORMS, vol. 44(10), pages 1351-1366, October.
    6. Margaret Insley & Kimberly Rollins, 2005. "On Solving the Multirotational Timber Harvesting Problem with Stochastic Prices: A Linear Complementarity Formulation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 735-755.
    7. Thomas A. Thomson, 1992. "Optimal Forest Rotation When Stumpage Prices Follow a Diffusion Process," Land Economics, University of Wisconsin Press, vol. 68(3), pages 329-342.
    8. Miller, Robert A. & Voltaire, Karl, 1983. "A stochastic analysis of the tree paradigm," Journal of Economic Dynamics and Control, Elsevier, vol. 6(1), pages 371-386, September.
    9. Miller, Robert A. & Voltaire, Karl, 1980. "A sequential stochastic tree problem," Economics Letters, Elsevier, vol. 5(2), pages 135-140.
    10. Laurence Reeves & Robert Haight, 2000. "Timber harvest scheduling with price uncertainty using Markowitz portfolio optimization," Annals of Operations Research, Springer, vol. 95(1), pages 229-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Couture, Stéphane & Cros, Marie-Josée & Sabbadin, Régis, 2016. "Risk aversion and optimal management of an uneven-aged forest under risk of windthrow: A Markov decision process approach," Journal of Forest Economics, Elsevier, vol. 25(C), pages 94-114.
    2. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    3. Stéphane S. Couture & Marie-Josée Cros & Régis Sabbadin, 2014. "Risk preferences and optimal management of uneven-aged forests in the presence of climate change: a Markov decision process approach," Post-Print hal-02741407, HAL.
    4. Sylvain Caurla & Antonello Lobianco, 2020. "Estimating climate service value in forestry : The case of climate information on drought for maritime pine in Southwestern France," Post-Print hal-03639335, HAL.
    5. Müller, Fabian & Hanewinkel, Marc, 2018. "Challenging the assumptions of a standard model: How historical triggers in terms of technical innovations, labor costs and timber price change the land expectation value," Forest Policy and Economics, Elsevier, vol. 95(C), pages 46-56.
    6. Petri P Kärenlampi, 2019. "Wealth accumulation in rotation forestry – Failure of the net present value optimization?," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    7. Sylvain Caurla & Antonello Lobianco, 2020. "Estimating climate service value in forestry : The case of climate information on drought for maritime pine in Southwestern France," Post-Print hal-02617889, HAL.
    8. Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    2. Zhou, Mo & Buongiorno, Joseph, 2011. "Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management," Forest Policy and Economics, Elsevier, vol. 13(5), pages 402-410, June.
    3. Tee, James & Scarpa, Riccardo & Marsh, Dan & Guthrie, Graeme, 2012. "Valuation of Carbon Forestry and the New Zealand Emissions Trading Scheme: A Real Options Approach Using the Binomial Tree Method," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123665, International Association of Agricultural Economists.
    4. Chang, Sun Joseph & Zhang, Fan, 2023. "Active timber management by outsourcing stumpage price uncertainty with the American put option," Forest Policy and Economics, Elsevier, vol. 154(C).
    5. Tahvonen, Olli & Suominen, Antti & Malo, Pekka & Viitasaari, Lauri & Parkatti, Vesa-Pekka, 2022. "Optimizing high-dimensional stochastic forestry via reinforcement learning," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    6. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    7. Bernardo K. Pagnoncelli & Adriana Piazza, 2017. "The optimal harvesting problem under price uncertainty: the risk averse case," Annals of Operations Research, Springer, vol. 258(2), pages 479-502, November.
    8. Adriana Piazza & Bernardo Pagnoncelli, 2014. "The optimal harvesting problem under price uncertainty," Annals of Operations Research, Springer, vol. 217(1), pages 425-445, June.
    9. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    10. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.
    11. Holopainen, Markus & Mäkinen, Antti & Rasinmäki, Jussi & Hyytiäinen, Kari & Bayazidi, Saeed & Pietilä, Ilona, 2010. "Comparison of various sources of uncertainty in stand-level net present value estimates," Forest Policy and Economics, Elsevier, vol. 12(5), pages 377-386, June.
    12. Chang, Fwu-Ranq, 2005. "On the elasticities of harvesting rules," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 469-485, March.
    13. Esther W. Mezey & Jon M. Conrad, 2010. "Real Options in Resource Economics," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 33-52, October.
    14. Chladna, Zuzana, 2007. "Determination of optimal rotation period under stochastic wood and carbon prices," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1031-1045, May.
    15. Adriana Piazza & Bernardo Pagnoncelli, 2015. "The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases," Journal of Economics, Springer, vol. 115(2), pages 175-194, June.
    16. James Tee & Riccardo Scarpa & Dan Marsh & Graeme Guthrie, 2014. "Forest Valuation under the New Zealand Emissions Trading Scheme: A Real Options Binomial Tree with Stochastic Carbon and Timber Prices," Land Economics, University of Wisconsin Press, vol. 90(1), pages 44-60.
    17. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
    18. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Manley, Bruce & Niquidet, Kurt, 2010. "What is the relevance of option pricing for forest valuation in New Zealand?," Forest Policy and Economics, Elsevier, vol. 12(4), pages 299-307, April.
    20. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:17:y:2011:i:3:p:248-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.