IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016597.html
   My bibliography  Save this article

Combustion characteristics of gaseous diffusion flames emanating from a novel eco-friendly swirl-induced burner at a constant heating load: Energy approach

Author

Listed:
  • Abd-Elgawad, Ahmed Mahfouz M.M.
  • Emara, Karim
  • Emara, Ahmed

Abstract

Combustion applications deal with exhaust emissions reduction without affecting combustion performance. This article displays comparative investigations of combustion characteristics experimentally and numerically (CFX) at constant heating load (10 kW) at different equivalence ratios. The combustion processes are maintained by an innovative designed swirl-induced LPG burner. The firing modes are (AFA) or without (AF-) according to annular air existence or not. The combustion measurements include thermal flame contours, exhaust gas emissions, stack losses, and combustor efficiency. A cylindrical water-cooled combustor is vertically mounted co-axial with burner centerline. The numerical modeling results show good agreement with the experimental measurements. Visual and thermal flame length is directly proportional to equivalence ratios at AF- and AFA operating conditions. The flow field modeling shows that AFA flames possessed dual recirculation zones that helps in mixing. AFA flames produce lower CO emissions at φ = 0.79, 0.86, and 0.96 than AF- flames; but thermal NOx emissions of AFA flames are higher due to a higher reaction rate. CO and N2 mass fractions emissions gave good agreement with experimental investigations.

Suggested Citation

  • Abd-Elgawad, Ahmed Mahfouz M.M. & Emara, Karim & Emara, Ahmed, 2025. "Combustion characteristics of gaseous diffusion flames emanating from a novel eco-friendly swirl-induced burner at a constant heating load: Energy approach," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016597
    DOI: 10.1016/j.energy.2025.136017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mahfouz, Ahmed & Moneib, H.A. & El-fatih, Ahmed & El-Sherif, Ashraf F. & Ayoub, H.S. & Emara, Ahmed, 2020. "Comparative study among waste cooking oil blends flame spectroscopy as an alternative fuel through using an industrial burner," Renewable Energy, Elsevier, vol. 159(C), pages 893-907.
    2. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    3. Szubel, M. & Papis-Frączek, K. & Podlasek, S., 2024. "Impact of the air supply system configuration on the straw combustion in small scale batch-boiler - experimental and numerical studies," Renewable Energy, Elsevier, vol. 220(C).
    4. Emara, Ahmed & Abd-Elgawad, Ahmed Mahfouz M.M. & Emara, Karim, 2024. "Innovative eco-friendly design solutions for energy demands using swirl- induced burner by jets," Energy, Elsevier, vol. 304(C).
    5. Baek, Seungju & Lee, Sanguk & Shin, Myunghwan & Lee, Jongtae & Lee, Kihyung, 2022. "Analysis of combustion and exhaust characteristics according to changes in the propane content of LPG," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Małgorzata Ćwil & Witold Bartnik & Sebastian Jarzębowski, 2021. "Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transportation Systems," Energies, MDPI, vol. 14(16), pages 1-14, August.
    2. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    3. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    4. Liu, Xinhui & Zeng, Chao & Yuan, Yanping & Luo, Jianing & Lü, Xiaoshu & Haghighat, Fariborz, 2025. "Comprehensive assessment of an integrated energy system with EVs in a PV-equipped station-city complex," Renewable Energy, Elsevier, vol. 246(C).
    5. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Malik, Leeza & Tiwari, Geetam, 2017. "Assessment of interstate freight vehicle characteristics and impact of future emission and fuel economy standards on their emissions in India," Energy Policy, Elsevier, vol. 108(C), pages 121-133.
    7. Charu Grover & Sangeeta Bansal & Adan L. Martinez-Cruz, "undated". "Influence of Social Network Effect and Incentive on Choice of Star Labeled Cars in India: A Latent Class Approach based on Choice Experiment," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-05, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    8. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    9. Jeong Kuk Kim & Siljung Yeo & Jae-Hyuk Choi & Won-Ju Lee, 2024. "LPG, Gasoline, and Diesel Engines for Small Marine Vessels: A Comparative Analysis of Eco-Friendliness and Economic Feasibility," Energies, MDPI, vol. 17(2), pages 1-17, January.
    10. Ahmad Zuhairi Muzakir & Eng Hwa Yap & Teuku Meurah Indra Mahlia, 2021. "The Way towards an Energy Efficient Transportation by Implementation of Fuel Economy Standards: Fuel Savings and Emissions Mitigation," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    11. Rosset, Kévin & Mounier, Violette & Guenat, Eliott & Schiffmann, Jürg, 2018. "Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines," Energy, Elsevier, vol. 159(C), pages 751-765.
    12. Sheldon, Tamara L. & Dua, Rubal, 2021. "How responsive is Saudi new vehicle fleet fuel economy to fuel-and vehicle-price policy levers?," Energy Economics, Elsevier, vol. 97(C).
    13. Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
    14. Liu, Tiantian & Wang, Qunwei & Su, Bin, 2016. "A review of carbon labeling: Standards, implementation, and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 68-79.
    15. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    16. Al-Ghandoor, A., 2013. "An approach to energy savings and improved environmental impact through restructuring Jordan's transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 31-42.
    17. Sergey Paltsev & Y.-H. Henry Chen & Valerie Karplus & Paul Kishimoto & John Reilly & Andreas Löschel & Kathrine Graevenitz & Simon Koesler, 2018. "Reducing CO2 from cars in the European Union," Transportation, Springer, vol. 45(2), pages 573-595, March.
    18. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    20. Shekarchian, M. & Moghavvemi, M. & Zarifi, F. & Moghavvemi, S. & Motasemi, F. & Mahlia, T.M.I., 2017. "Impact of infrastructural policies to reduce travel time expenditure of car users with significant reductions in energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 327-335.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.