IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp893-907.html

Comparative study among waste cooking oil blends flame spectroscopy as an alternative fuel through using an industrial burner

Author

Listed:
  • Mahfouz, Ahmed
  • Moneib, H.A.
  • El-fatih, Ahmed
  • El-Sherif, Ashraf F.
  • Ayoub, H.S.
  • Emara, Ahmed

Abstract

The presented experimental investigation aims at providing a microscopic insight into the flame characteristics of the conventional (light/heavy diesel), a renewable fuel (waste cooking oil), and its blends with light/heavy diesel oils. A hyperspectral camera is used to provide detailed information on fuel reactivity and radiation intensities within the flame zones via the analysis of the C2 and CH radiation emissions. The experiments cover four equivalence ratios (Φ) of 0.63, 0.75, 0.96, and 1.1. A coaxial disc stabilized burner having a twin air jet atomizer is employed. The flame images are taken in the open atmosphere and the assessment of the combustion efficiency is obtained through the measurements of the cooling load inside a cylindrical combustor. The calculated values of the spatial cross-sectional average flame temperatures along the different flames are compared with the corresponding values obtained by a type S thermocouple.

Suggested Citation

  • Mahfouz, Ahmed & Moneib, H.A. & El-fatih, Ahmed & El-Sherif, Ashraf F. & Ayoub, H.S. & Emara, Ahmed, 2020. "Comparative study among waste cooking oil blends flame spectroscopy as an alternative fuel through using an industrial burner," Renewable Energy, Elsevier, vol. 159(C), pages 893-907.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:893-907
    DOI: 10.1016/j.renene.2020.06.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ghorbani, Afshin & Bazooyar, Bahamin, 2012. "Optimization of the combustion of SOME (soybean oil methyl ester), B5, B10, B20 and petrodiesel in a semi industrial boiler," Energy, Elsevier, vol. 44(1), pages 217-227.
    2. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.
    3. Kalam, M.A & Husnawan, M & Masjuki, H.H, 2003. "Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine," Renewable Energy, Elsevier, vol. 28(15), pages 2405-2415.
    4. Senthur Prabu, S. & Asokan, M.A. & Roy, Rahul & Francis, Steff & Sreelekh, M.K., 2017. "Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives," Energy, Elsevier, vol. 122(C), pages 638-648.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abd-Elgawad, Ahmed Mahfouz M.M. & Emara, Karim & Emara, Ahmed, 2025. "Combustion characteristics of gaseous diffusion flames emanating from a novel eco-friendly swirl-induced burner at a constant heating load: Energy approach," Energy, Elsevier, vol. 324(C).
    2. Antonov, D.V. & Dorokhov, V.V. & Nagibin, P.S. & Shlegel, N.E. & Strizhak, P.A., 2024. "Co-combustion of methane hydrate granules and liquid biofuel," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    2. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    3. Bazooyar, Bahamin & Hosseini, Seyyed Yaghoob & Moradi Ghoje Begloo, Solat & Shariati, Ahmad & Hashemabadi, Seyed Hassan & Shaahmadi, Fariborz, 2018. "Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel," Energy, Elsevier, vol. 149(C), pages 438-453.
    4. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    5. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    6. Baldev, Edachery & Mubarakali, Davoodbasha & Saravanakumar, Kandasamy & Arutselvan, Chithirai & Alharbi, Naiyf S. & Alharbi, Sulaiman Ali & Sivasubramanian, Velusamy & Thajuddin, Nooruddin, 2018. "Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment," Renewable Energy, Elsevier, vol. 123(C), pages 486-498.
    7. Sidibé, S.S. & Blin, J. & Vaitilingom, G. & Azoumah, Y., 2010. "Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2748-2759, December.
    8. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A. & Teoh, Yew Heng, 2022. "Palm biodiesel spray and combustion characteristics in a new micro gas turbine combustion chamber design," Energy, Elsevier, vol. 254(PB).
    9. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    10. Das, Anu Kumar & Ch Shill, Dayal & Chatterjee, Saibal, 2022. "Coconut oil for utility transformers – Environmental safety and sustainability perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    12. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    13. Ashok, B. & Nanthagopal, K. & Mohan, Aravind & Johny, Ajith & Tamilarasu, A., 2017. "Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine," Energy, Elsevier, vol. 140(P1), pages 352-364.
    14. Jamshaid, M. & Masjuki, H.H. & Kalam, M.A. & Zulkifli, N.W.M. & Arslan, A. & Qureshi, A.A., 2022. "Experimental investigation of performance, emissions and tribological characteristics of B20 blend from cottonseed and palm oil biodiesels," Energy, Elsevier, vol. 239(PA).
    15. Ma, Shuaifei & Guo, Qi & Wei, Jiangjun & Yin, Zenghui & Zhuang, Yuan & Zhang, Yu & Dai, Qian & Qian, Yejian, 2024. "Analyzing the effect of carbon nanoparticles on the combustion performance and emissions of a DI diesel engine fueled with the diesel-methanol blend," Energy, Elsevier, vol. 300(C).
    16. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    17. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    18. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    19. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    20. Amedi, Hamid Reza & Bazooyar, Bahamin & Pishvaie, Mahmoud Reza, 2015. "Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell," Energy, Elsevier, vol. 90(P1), pages 605-621.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:893-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.