IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020875.html
   My bibliography  Save this article

Exploring the potential of a novel passenger transport model to study the decarbonization of the transport sector

Author

Listed:
  • Álvarez-Antelo, David
  • Lauer, Arthur
  • Capellán-Pérez, Íñigo

Abstract

To explore sustainability strategies in the transport sector in a holistic way, a model dedicated to passenger transportation has been created as a part of the multiregional WILIAM model (Within Limits Integrated Assessment Model). Based on system dynamics, our model increases the diversity of existing passenger transport models within Integrated Assessments Models by offering a detailed representation of the dynamics of the transition for different technologies and transport modes combining technological and behavioural changes. It calculates the energy demand, direct emissions and additional material requirements of the transport sector and can be linked to other submodules of WILIAM to study different feedback loops. Here we report the validation of the offline model and illustrate its usefulness and practical applicability. First, a Baseline transport scenario for Spain was developed and parametrized. This scenario describes the plausible evolution of the Spanish passenger transport system in the absence of ambitious environmental policies but nevertheless achieves a reduction of total direct CO2 emissions from passenger transport from 66 Mt CO2/year in 2022 to 60 Mt CO2/year in 2035, after which emissions remain constant until 2050. Subsequently, following the Avoid-Shift-Improve approach, various behavioural change measures and technological improvements were introduced. The comparison of the different modelled measures reveals that the most effective tested strategy to reduce direct emissions is the transition to battery electric power trains for cars, buses, and motorcycles, however at the cost of the highest material requirements. Further work will be dedicated to the study of the implications of the link of this submodule with the rest of WILIAM.

Suggested Citation

  • Álvarez-Antelo, David & Lauer, Arthur & Capellán-Pérez, Íñigo, 2024. "Exploring the potential of a novel passenger transport model to study the decarbonization of the transport sector," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020875
    DOI: 10.1016/j.energy.2024.132313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Bakker & Mark Zuidgeest & Heleen de Coninck & Cornie Huizenga, 2014. "Transport, Development and Climate Change Mitigation: Towards an Integrated Approach," Transport Reviews, Taylor & Francis Journals, vol. 34(3), pages 335-355, May.
    2. Olivier Sassi & Renaud Crassous & Jean-Charles Hourcade & Vincent Gitz & Henri Waisman & Celine Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 5-24.
    3. Mishra, Gouri S. & Kyle, Page & Teter, Jacob & Morrison, Geoffrey M. & Kim, Son H. & Yeh, Sonia, 2013. "Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0," Institute of Transportation Studies, Working Paper Series qt8nk2c96d, Institute of Transportation Studies, UC Davis.
    4. Stanley, John K. & Hensher, David A. & Loader, Chris, 2011. "Road transport and climate change: Stepping off the greenhouse gas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1020-1030.
    5. David L. McCollum & Charlie Wilson & Michela Bevione & Samuel Carrara & Oreane Y. Edelenbosch & Johannes Emmerling & Céline Guivarch & Panagiotis Karkatsoulis & Ilkka Keppo & Volker Krey & Zhenhong Li, 2018. "Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles," Nature Energy, Nature, vol. 3(8), pages 664-673, August.
    6. Aimée Aguilar Jaber & Daniela Glocker, 2015. "Shifting towards Low Carbon Mobility Systems," International Transport Forum Discussion Papers 2015/17, OECD Publishing.
    7. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    8. Panayotis Christidis & Aris Christodoulou & Elena Navajas-Cawood & Biagio Ciuffo, 2021. "The Post-Pandemic Recovery of Transport Activity: Emerging Mobility Patterns and Repercussions on Future Evolution," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    9. Safarzyńska, Karolina & van den Bergh, Jeroen C.J.M., 2018. "A higher rebound effect under bounded rationality: Interactions between car mobility and electricity generation," Energy Economics, Elsevier, vol. 74(C), pages 179-196.
    10. Miriam Magdolen & Sascha von Behren & Lukas Burger & Bastian Chlond, 2021. "Mobility Styles and Car Ownership—Potentials for a Sustainable Urban Transport," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Alicja Dyczkowska & Norbert Chamier-Gliszczynski & Waldemar Woźniak & Roman Stryjski, 2024. "Management of the Fuel Supply Chain and Energy Security in Poland," Energies, MDPI, vol. 17(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    4. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    6. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    7. Gössling, Stefan, 2016. "Urban transport justice," Journal of Transport Geography, Elsevier, vol. 54(C), pages 1-9.
    8. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    9. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    10. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    11. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    12. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    13. Gupta, Monika, 2016. "Willingness to pay for carbon tax: A study of Indian road passenger transport," Transport Policy, Elsevier, vol. 45(C), pages 46-54.
    14. Jeuland, Marc & Fetter, T. Robert & Li, Yating & Pattanayak, Subhrendu K. & Usmani, Faraz & Bluffstone, Randall A. & Chávez, Carlos & Girardeau, Hannah & Hassen, Sied & Jagger, Pamela & Jaime, Mónica , 2021. "Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Lisa Dang & Widar von Arx, 2021. "How Can Rail Use for Leisure and Tourism Be Promoted? Using Leisure and Mobility Orientations to Segment Swiss Railway Customers," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    17. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.
    18. Julie Rozenberg & Stéphane Hallegatte & Adrien Vogt-Schilb & Olivier Sassi & Céline Guivarch & Henri Waisman & Jean Charles Hourcade, 2010. "Climate policies as a hedge against the uncertainty on future oil supply," Working Papers hal-00866449, HAL.
    19. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    20. Briera, Thibault & Lefèvre, Julien, 2024. "Reducing the cost of capital through international climate finance to accelerate the renewable energy transition in developing countries," Energy Policy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.