IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v46y2016icp82-91.html
   My bibliography  Save this article

Travel behaviour and CO2 emissions in urban and exurban London and New York

Author

Listed:
  • Focas, Caralampo

Abstract

Car travel and associated greenhouse gas emissions per capita in London's outer region are more than double than the ones of its metropolitan area. In New York's outer region car travel is four times per capita than what it is in its urban area. The comparative analyses are based on the UK National Travel Survey and the US National Household Travel Survey. The population outside Greater London' Green Belt and New York's periphery has been growing relentlessly since the 1950s. The transport structure of the South East of England and the New York Tri-State area has been largely shaped around the private car. Measures that aim to meet CO2 emission targets will need address the nature of the cardependent developments of London's and New York's growing outer fringe. The paper compares the current travel structure of the outer regions of the two cities that are nearly exclusively moulded around the motorcar. Using specially commissioned spatial breakdowns of the respective household travel survey data, detailed travel behaviour is analysed for both the urban and exurban areas. The data illustrates the stark contrast in mobility of the urban and exurban areas of the cities. Through an analysis of current vehicle use, estimates of CO2 emissions are made using established average emission factors per vehicle in each region. In our study of London and New York regions the exurban areas produce the bulk of car-based CO2 emissions: 77% for the London region and 87% for the New York region. Furthermore, using existing population forecasts and estimates of future average CO2 emissions per vehicle, future levels of CO2 emissions from private vehicles are estimated. Our estimates show that the CO2 emission reduction targets that have been set will not be met by a large margin.

Suggested Citation

  • Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
  • Handle: RePEc:eee:trapol:v:46:y:2016:i:c:p:82-91
    DOI: 10.1016/j.tranpol.2015.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X15300706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2015.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    2. Peter Headicar, 2013. "The Changing Spatial Distribution of the Population in England: Its Nature and Significance for 'Peak Car'," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 310-324, May.
    3. David Banister & Robin Hickman, 2009. "Techno-optimism: progress towards CO 2 reduction targets in transport: a UK and London perspective," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 12(1), pages 24-47.
    4. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    5. Stanley, John K. & Hensher, David A. & Loader, Chris, 2011. "Road transport and climate change: Stepping off the greenhouse gas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1020-1030.
    6. Hickman, Robin & Hall, Peter & Banister, David, 2013. "Planning more for sustainable mobility," Journal of Transport Geography, Elsevier, vol. 33(C), pages 210-219.
    7. Greg Marsden & Antonio Ferreira & Ian Bache & Matthew Flinders & Ian Bartle, 2014. "Muddling through with climate change targets: a multi-level governance perspective on the transport sector," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 617-636, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Zheng & Suocheng Dong & Yingjie Hu & Yu Li, 2020. "Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
    2. Zijia Wang & Juanjuan Ding & Lichang Wang & Ziqiang Zhu, 2022. "Ex-ante and ex-post approaches of evaluating carbon emission reduction in urban rail transit," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-21, October.
    3. O'Driscoll, Conor & Crowley, Frank & Doran, Justin & McCarthy, Nóirín, 2022. "Retail sprawl and CO2 emissions: Retail centres in Irish cities," Journal of Transport Geography, Elsevier, vol. 102(C).
    4. Hongchang Li & Jack Strauss & Lihong Liu, 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    5. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliasson, Jonas & Proost, Stef, 2015. "Is sustainable transport policy sustainable?," Transport Policy, Elsevier, vol. 37(C), pages 92-100.
    2. Banister, David & Hickman, Robin, 2013. "Transport futures: Thinking the unthinkable," Transport Policy, Elsevier, vol. 29(C), pages 283-293.
    3. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    4. Fiamma Perez-Prada & Andres Monzon & Cristina Valdes, 2017. "Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems," Energies, MDPI, vol. 10(6), pages 1-18, June.
    5. Keyju Lee & Junjae Chae & Jinwoo Kim, 2019. "A Courier Service with Electric Bicycles in an Urban Area: The Case in Seoul," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    6. Ariza-Álvarez, Amor & Soria-Lara, Julio A. & Arce-Ruiz, Rosa M. & López-Lambas, María Eugenia & Jimenez-Espada, Montaña, 2021. "Experimenting with scenario-building narratives to integrate land use and transport," Transport Policy, Elsevier, vol. 101(C), pages 57-70.
    7. Emine Coruh & Faruk Urak & Abdulbaki Bilgic & Steven T. Yen, 2022. "The role of household demographic factors in shaping transportation spending in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3485-3517, March.
    8. Stanley, John & Ellison, Richard & Loader, Chris & Hensher, David, 2018. "Reducing Australian motor vehicle greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 76-88.
    9. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    10. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    11. Zhang, Linling & Long, Ruyin & Li, Wenbo & Wei, Jia, 2020. "Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai," Journal of Transport Geography, Elsevier, vol. 85(C).
    12. Olsson, Linda & Hjalmarsson, Linnea & Wikström, Martina & Larsson, Mårten, 2015. "Bridging the implementation gap: Combining backcasting and policy analysis to study renewable energy in urban road transport," Transport Policy, Elsevier, vol. 37(C), pages 72-82.
    13. Kinigadner, Julia & Büttner, Benjamin, 2021. "How accessibility instruments contribute to a low carbon mobility transition: Lessons from planning practice in the Munich region," Transport Policy, Elsevier, vol. 111(C), pages 157-167.
    14. Hickman, Robin & Saxena, Sharad & Banister, David & Ashiru, Olu, 2012. "Examining transport futures with scenario analysis and MCA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 560-575.
    15. Bastian, Anne & Börjesson, Maria, 2014. "It's the economy, stupid: increasing fuel price is enough to explain Peak Car in Sweden," Working papers in Transport Economics 2014:15, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    16. Kristof Van Assche & Raoul Beunen & Stefan Verweij, 2020. "Learning from Other Places and Their Plans: Comparative Learning in and for Planning Systems," Urban Planning, Cogitatio Press, vol. 5(1), pages 1-5.
    17. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    18. Michael Iacono & David Levinson, 2015. "Cohort Effects and Their Influence on Car Ownership," Working Papers 000138, University of Minnesota: Nexus Research Group.
    19. José Renato Barandier & Milena Bodmer & Izabella Lentino, 2017. "Evidence of the impacts of the national housing programme on the accessibility of the low‐income population in Rio de Janeiro," Natural Resources Forum, Blackwell Publishing, vol. 41(2), pages 105-118, May.
    20. Gupta, Monika, 2016. "Willingness to pay for carbon tax: A study of Indian road passenger transport," Transport Policy, Elsevier, vol. 45(C), pages 46-54.

    More about this item

    Keywords

    Exurbia; London; New York; Sustainability; Land Use; CO2;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:46:y:2016:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.